
1. Introduction and Survey

In the 21st century computers are in the process of changing all aspects of our lives. That includes also
mathematics - both the way we do it and even the kind of problems that interest us. The ability to make
computations far beyond anything that was possible without the aid of computers has opened up previ-
ously inaccessible areas of research to anyone equipped with a computer,   suitable software and some
mathematical knowledge.  This has lead to the creation of sophisticated programs intended for dealing
with  all  aspects  of  computational  mathematics  -  symbolic  manipulation,  numerical  computation  and
visualization  (including  interactive  one).   A  leading  program  of  this  type  is  Mathematica  produced  by
Wolfram Research.  Mathematica  is,  of  course,  not  only  a  tool  of  research and exploring new areas of
computational  mathematics but  also an extremely effective aid in studying traditional  ones.  The aim of
this essay is to give a brief introduction to some of the possibilities offered by this remarkable program.
For this purpose we have made use of a number of exmaples, some of which are due to the authors of
this text, some have been borrowed from Mathematica’s official  documentation and some from various
sources on the Internet. 

Basic information about Mathematica

� The main web-page

The main website for current information, useful projects, plug-ins, learning center
 and documentation is www.wolfram.com .  At  this website one can also find a free CDF-Player,   thou-
sands of demonstrations with source files and educational videos.

Mathematica is  one of the most powerful and sophisticated systems for symbolic and numerical compu-
tation and visualization. But it is also more than that. Wolfram Research used to describe Mathematica
as a “system for  doing mathematics by computer” but  it  has since changed this  to  “ the only  develop-
ment platform fully integrating computation into complete work-flows”. In other words, Wolfram Research
now  conceives  Mathematica  as  essentially  a  universal  tool  for  almost  every  purpose  -  symbolic  and
numerical  computation  and  programming  being  a  central  aspect  (but  this  is  not  the  whole  story).  For
example, Mathematica is also an advanced technical typesetting tool, which can produce mathematical
documents  of  quality  comparable  to  TEX  and  Latex  but  in  a  fully  WYSIWYG (What  You  See  is  What

You Get) way. At the same time, these documents can contain “live” mathematical formulas and graph-
ics that can be send to another person (a collaborator, a student or a professor) who can use them to
verify the correctness of results or to perform additional computations etc. 

In terms of its overall abilities Mathematica currently has no comparable rival (except, perhaps, for suites
of  several  applications).  But  if  we  restrict  our  attention  only  to  computation,  there  are  other  programs
(e.g.  Maple,  MatLab  and  others)  that  can  do  similar  things.  As  a  mathematical  tool,  Mathematica  is  a
“general purpose” system. It is very strong in both symbolic and numeric computation. It has very many
powerful specialized functions for subjects as different as polynomial algebra, graph theory, statistics of
financial mathematics. However, in some areas (particularly in pure mathematics) there are specialized
programs  (such  as  MAGMA,  Singular,  Macaulay2  etc.)  which  can  do  some  things  that  Mathematica
cannot  do  without  additional  programming  or  can  do  them   faster  (which  in  certain  situations  can  be
crucial). 

The official distributor of Mathematica in Poland is the company Gambit <http://www.mathematica.pl>.

http://www.wolfram.com/
http://demonstrations.wolfram.com/download-cdf-player.html
http://demonstrations.wolfram.com
http://www.mathematica.pl


� Wolfram Research sites and projects

Wolfram Research has a  number  of  sites  and projects  of  interest  both   to  Mathematica  users  and the
general public:

ã Mathworld  <http://mathworld.wolfram.com/>

Mathworld is a very useful and extensive web  resource with definitions, examples and main theorems in
mathematics (and often  - Mathematica files in the NB format, i.e., Mathematica notebooks .)

ã Wolfram Alpha  <http://www.wolframalpha.com/>

Wolfram Alpha - Mathematica (and more) for everyone!

ã Wolfram Demonstrations Project <http://demonstrations.wolfram.com>

ã Education

Wolfram Research has  an extensive  educational  program.  To register  for  on-line  Wolfram Educational
Group (WEG) seminars and classes, one can visit  
  <http://www.wolfram.com/services/education/calendar.cgi> 
The Wolfram Education Group (WEG)  offers a wide range of free on-line seminars featuring the latest
version of Mathematica  (see http://www.wolfram.com/services/education/seminars/). 

There are conferences/master classes/other events in  Europe and in  particular,  in  Poland.  In  Warsaw,
ICM (the interdisciplinary center at UW) has Mathematica and  provides  some training. 

ã The Mathematica Journal

 The  Mathematica  Journal  <http://www.mathematica-journal.com/>  is  an  on-line  journal  with  research
and educational papers. 

� Other Mathematica related sites

There is an excellent and free introduction to Mathematica programming due to Leonid Shifrin:
http://www.mathprogramming-intro.org/
Also  the  Mathematica  Guidebooks  <http://www.mathematicaguidebooks.org/index.shtml>  provide  a
wealth of applications and examples, particularly from physics but also from other areas. Unfortunately
the  guidebooks  are  still  not  fully  compatible  with  Mathematica  6  and  later  versions  so  they  are  only
suitable for users who are advanced enough to update the relevant parts themselves.

Finally there is an excellent Mathematica discussion group (known as the MathGroup) 
http://groups.google.com/group/comp.soft-sys.math.mathematica/topics?pli=1
You can ask any questions about any aspect of Mathematica and get a variety of answers from Mathe-
matica  experts,  including  Wolfram  Research  employees.  Sometimes  you  can  even  have  your  math
problems solved for you. 
This is really the best Mathematica centered resource on the Web, if you know how to make use of it. 

The above is, of course, not intended to be a exhaustive account of Mathematica  related resources on
the Internet. Far from it, the number of  both general purpose and specialised sites intended for begin-
ners as well as advanced users is huge and constantly increasing (e.g. blog.wolfram.com, Mathematica
Tips on Twitter etc). 

SELECTED EXAMPLES OF WHAT MATHEMATICA CAN DO
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SELECTED EXAMPLES OF WHAT MATHEMATICA CAN DO

� Computational applications

ã Built-in functions

A  large  number  of  problems  (even  some  “real  life” ones)   can  be  solved  by  simply  applying  one  of
Mathematica’s  built-in  “functions” (the  word  “function” in  connection  with  Mathematica  is  used  in  a
somewhat different sense than in mathematics, closer to what in other programming languages is called
a  “procedure”).   Among  the  most  useful  of  these  functions  are  Solve  and   Reduce.  These  are  very
general functions that use a large ensemble of advanced algorithms to solve all kinds of equations and
inequalities, many of which would appear unsolvable even to people with good knowledge of mathemat-
ics.  We  will  looks  at  some  remarkable  examples  of  the  sort  of   thing  that  can  be  accomplished  with
Reduce.
(In  version  8  the  functions  Solve  became  very  enhanced  and  can  solve  many  of  the  problems  that
Reduce can, but it often uses somewhat different techniques. Probably the main difference between the
two functions is that Reduce always attempts to return the complete solutions of a problem while Solve
will in some situations return a partial solution.)

Perhaps the most basic and frequently performed task in mathematics is solving equations. Reduce can
be used, of course, to solve equations (and systems of equations) far too complicated to solve by hand.
We start by looking at a simple cubic equation, which Mathematica can solve using the famous formula
of del Ferro (often attributed to Tartaglia):

Reduce@x^3 - x + 1 � 0, x, Cubics ® TrueD

x � -
2

3 J9 - 69 N
3

-

1

2
J9 - 69 N3

32�3
ë x � K1 + ä 3 O

1

2
K9 - 69 O3 � I2 ´ 32�3M +

1 - ä 3

22�3 3 J9 - 69 N3

ë

x � K1 - ä 3 O
1

2
K9 - 69 O3 � I2 ´ 32�3M +

1 + ä 3

22�3 3 J9 - 69 N3

We can also ask Mathematica to compute the real root only:

Reduce@x^3 - x + 1 � 0, x, Reals, Cubics ® TrueD

x � -
2

3 J9 - 69 N
3

-

1

2
J9 - 69 N3

32�3

We can compute it’s numerical value to arbitrary precision:

N@%, 30D

x � -1.32471795724474602596090885448

From the work of Abel and Galois it  is known that no solutions of the above kind (in terms of radicals)
can be given for polynomial equations of degree higher than 5. However, this does not stop Mathemat-
ica :
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From the work of Abel and Galois it  is known that no solutions of the above kind (in terms of radicals)
can be given for polynomial equations of degree higher than 5. However, this does not stop Mathemat-
ica :

Reduce@x^5 - x + 1 � 0, xD

x � RootAð15
- ð1 + 1 &, 1E ë x � RootAð15

- ð1 + 1 &, 2E ë

x � RootAð15
- ð1 + 1 &, 3E ë x � RootAð15

- ð1 + 1 &, 4E ë x � RootAð15
- ð1 + 1 &, 5E

Again the values can be computed to arbitrary precision:

N@%, 30D

x � -1.16730397826141868425604589985 ê
x � -0.181232444469875383901800237781 - 1.083954101317710668430344492981 ä ê
x � -0.181232444469875383901800237781 + 1.083954101317710668430344492981 ä ê
x � 0.764884433600584726029823187709 - 0.352471546031726249317947091403 ä ê
x � 0.764884433600584726029823187709 + 0.352471546031726249317947091403 ä

Reduce  can  also  deal  with  purely  symbolic  problems.  For  example,  consider  the  quadratic  equation

a x2
+ b x + c � 0.  Let’s obtain the well known condition for it to have two equal roots. 

ReduceA$x,a x2+b x+c�0 "y,a y2+b y+c�0 x � y, 8a, b, c<E

Ha � 0 ì b ¹ 0L ë a ¹ 0 í c �

b2

4 a

Let’s now try something non-polynomial. Here is a trigonometric equation.  We ask Reduce to solve it for
a range of values  in an interval, where there is a finite number of solutions:

Reduce@Cos@xD � Sin@xD && 0 < x < 2 Pi, xD �� FullSimplify

4 x � Π ê 4 x � 5 Π

We can also obtain a complete solution without a restriction on the domain of solutions.

Reduce@Cos@xD � Sin@xD, xD �� FullSimplify

c1 Î Z ì HΠ H8 c1 - 3L � 4 x ê 8 Π c1 + Π � 4 xL

Here is an equation that seems impossible to solve by hand, but Reduce can do it:

Reduce@Cos@Cos@xDD � Sin@Sin@xDD && Abs@xD < 1, xD

x � Root@8cosHcosHð1LL - sinHsinHð1LL &, 0.7853981633974483096156608458198757210492923498437764552437 -

0.4663385348278305845718632848784660354269560408360176474839 ä<D ê
x � Root@8cosHcosHð1LL - sinHsinHð1LL &, 0.7853981633974483096156608458199 +

0.4663385348278305845718632848785 ä<D
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N@%, 10D

x � 0.7853981634 - 0.4663385348 ä ê x � 0.7853981634 + 0.4663385348 ä

All the solutions are complex numbers. Reduce can prove that there are no real solutions:

Reduce@Cos@Cos@xDD � Sin@Sin@xDD, x, RealsD

False

Here is a completely different kind of equation, this time over the integers. 

Reduce@n! + n � 726 && n > 0, n, IntegersD

n � 6

Let’s now try something harder - a “real life” problem. There is an Internet forum, called the MathGroup,
where people post questions about Mathematica, including mathematical questions they try to solve with
Mathematica. Solutions are posted by other users including some of the staff of Wolfram Research. One
such  question  was  posted  by  Ivan  Smirnov  in  January  2011  (the  whole  thread  can  be  found  here:  
Smirnov’s problem

Are there any integer solutions of x10
+ y10

+ z10
= t2?

It is easy to find trivial solutions where two of the three variables x, y, z are zero, so let’s look for such
solutions. Reduce cannot solve the complete problem but it can quickly verify that there are no solutions

for t £ 104.

Reduce@x^10 + y^10 + z^10 � t^2 && 0 £ x && 0 < y && x £ y && y £ z && 1 £ t £ 10^4,
8x, y, z, t<, IntegersD �� Timing

81.53308, False<

In  fact  (after  changing  certain  settings  which  limit  the  number  of  cases  Reduce will  consider,  one  can

verify that there are no solutions for 1 £ t £ 1010.

Reduce can be very useful in many undergraduate courses. For example, in Analysis 1 one often needs
to prove that a certain integer sequence is monotonic. Consider, for example, the problem 

ReduceBn1�n
> Hn + 1L

1

n+1 && n > 0, n, IntegersF

n Î Z ì n ³ 3

ã Programming

Although  many  problems  can  be  solved  just  by  applying  built-in  functions,  in  many  cases  there  is  no
built-in  function that  will  do  all  the  work  by  itself.  In  such cases we need to  do our  own programming.
Here are some recent problems taken from the MathGroup.

Find three 2 - digit prime numbers such that :
(i)  The average of any two of the three is a prime number, and
 (ii) The average of all three is also a prime number
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Find three 2 - digit prime numbers such that :
(i)  The average of any two of the three is a prime number, and
 (ii) The average of all three is also a prime number

There is no Mathematica function that will automatically answer a question like this, but the answer can
be found with a few lines of Mathematica code:

ls1 = Select@Range@11, 99D, PrimeQD;
ls2 = Tuples@ls1, 83<D;
ls3 = DeleteCases@Union@Sort �� ls2D, 8___, x_, ___, x_, ___<D;
Select@ls3, And �� PrimeQ �� Mean �� Partition@ð1, 2, 1, 81, 1<D &D

11 23 71
11 23 83
11 47 71
13 61 73
17 29 89
23 59 83
29 53 89

Here is another question from the MathGroup: 

What'  s  the easiest  way to determine the length of  the repeating cycle for  decimal expansions of  frac-
tions? For example, 1/7 == 0.14285714285714285714. . .so the length of its repeating cycle
(142857) is 6.  For 1/3 the length of  the cycle is obviously 1.  For some fractions, e.g.,  1/4,  the decimal
expansion is not cyclical (in base 10).

We use programming to define a function lengthOfCycle. We make use of several built-in Mathematica
functions, in particular, IntegerExponent and MultiplicativeOrder.  If we could not use these functions the
program would have to be much longer, more complicated and less efficient.

lengthOfCycle@x_RationalD :=

Module@8n = Denominator@xD, a, b<, a = IntegerExponent@n, 2D;
b = IntegerExponent@n, 5D; MultiplicativeOrder@10, n � H2^a * 5^bLDD

lengthOfCycle@1 � 7D

6

In certain situations programs written in  Mathematica programming language can be much slower than
programs  written  in  typed  and  compiled  languages  such  as  C,  Java,  etc  (although,  of  course,  writing
such programs in Mathematica  is  almost always much quicker).  However,  for  many types of  programs
this  difference  can  be  greatly  reduced  by  “compiling”.  Not  every  kind  of  Mathematica  program can  be
successfully compiled but when it  can, this can make a very big difference to performance. Here is an
example  where  a  non-compiled  Mathematica  program  performs  rather  poorly.  We  will  give  only  a
compiled version, that is very fast. The program constructs an Ulam spiral and is due to Daniel Lichtblau
of Wolfram Research:
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ulamSpiral = Compile@88len, _Integer<<,
Module@8dat = Range@lenD, x = 0, y = 0, shift = 1, i = 0, j = 0, xincr = 81, 0, -1, 0<,

yincr = 80, 1, 0, -1<, shiftincr = 80, 1, 0, 1<<, Select@Table@i++;
If@i ³ shift, i = 1; shift += shiftincr@@Mod@j, 4, 1DDD; j++;D;
x += xincr@@Mod@j, 4, 1DDD; y += yincr@@Mod@j, 4, 1DDD;
If@PrimeQ@dat@@numDDD, 8x, y<, 81000, 1000<D, 8num, len<D,

Abs@First@ðDD < 1000 &DD, 88PrimeQ@_D, True False<<D;

Making a spiral with 60 000 points takes only a fraction of a second:

ls = ulamSpiral@60 000D; �� Timing

80.088024, Null<

We can view the spiral as a collection of points:

ListPlot@lsD

-100 -50 50 100

-100

-50

50

100

or of lines

ListLinePlot@lsD

-100 -50 50 100

-100

-50

50

100

In  Mathematica  version  8,  this  can  be  speeded  up  further  by  using  the  option
CompilationTarget ® "C", which however, requires that a C-compiler be installed on the computer. 
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� Specialized Mathematics

Mathematica contains a large number of specialized functions for various areas of mathematics, ranging
from  Group  Theory  and  Number  Theory  to  Statistics  (a  vast  number  of  statistical  distributions  are
available as built-in functions) and financial mathematics. A particularly interesting aspect is Mathemati-
ca’s  ability  to  obtain  live  financial  data  from  the  Internet  and  analyze  them  by  means  of  a  variety  of
specific financial functions. As an example we compare the performance of the value of the index of the
American NASDAQ stock exchange (on which most US technology companies are represented) and of
Apple Computer Inc.

data1 = FinancialData@"^IXIC", "Jan. 1, 2007"D;

g1 = DateListPlot@data1, Joined -> True, PlotLabel ® "NASDAQ Composite"D;

data2 = FinancialData@"AAPL", "Jan. 1, 2007"D;

g2 = DateListPlot@data2, Joined -> True, PlotLabel ® "Apple"D;

GraphicsGrid@88g1, g2<<D

2007 2008 2009 2010 2011

1500

2000

2500

NASDAQ Composite

2007 2008 2009 2010 2011

100
150
200
250
300
350

Apple

� Graphics

Mathematica has remarkable graphic capabilities. Here is an example of a mathematical graphic related
to the subject of iteration of functions in the complex plane and “fractals”.
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� Beyond Graphics - Interactive Dynamics

A completely new set of features, that have nothing quite similar in other programs, appeared in Mathe-
matica 6.  These involve interactive “dynamic” abilities that are difficult to describe in a static format, but
can be seen below. 

Wolfram Demonstrations Project

It is difficult to describe on a static page how remarkably useful this functionality is in all kinds of situa-
tions,  including  both  research  and  teaching.  A  single  interactive  Mathematica  notebook  can  replace
dozens of static pictures. 

Here we see one example.  It shows the convergence of the power series Ún=1
¥ zn

nk
 on the unit disk  z¤ £ 1

for  k = 0, 1, 2 … .   Here  we  only  see  the  case  n = 1,  when  the  series  converges  in  the  unit  disk  and
everywhere  on  the  boundary  except  at  the  point  z = 1.  The  graphic  on  the  left  shows  the  complex
values  over  the  unit  disk  of  a  finite  sum of  terms  of  the  series,  on  the  right  we  see  the  values  of  the
analytic function defined by the series. The modulus of the complex values of a function is represented
by the height of the graph and the argument by colour. In the first graphic a shorter finite sum is used, in
the second a longer.  We can see the improvement in the approximation and the singular behaviour at
z = 1. We can also interactively choose any point on the unit disk and see the modulus of the difference
between the values of the corresponding finite sum and the infinite series. Again, this is the sort of thing
that would be very difficult to reproduce by other means.
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show boxes

k 1

truncation 5

height 5

modulus 0.453

argument 0.001

Unresolved Dynamic Content

The CDF Format and the CDF Player

With version 8 of Mathematica a new file format for Mathematica files was introduced. 

The CDF player makes it easy to use Mathematica in class or at home even when students do not have
Mathematica themselves. It is a free program that can be downloaded from Wolfram’s web site.
Wolfram CDF Player

Wolfram Alpha

Wolfram Alpha - Mathematica for everyone!

Wolfram Alpha received a great deal of publicity when it first appeared and it may even be better known
than Mathematica,  but not many people seem to realize that Wolfram Alpha is based on Mathematica
and,  in  effect,  provides  the  general  public  with  free  access  to  much  of  Mathematica’s  functionality.
Moreover,  it  does  not  require  learning  the  Mathematica  syntax.  Indeed,  the  most  famous  aspect  of
Wolfram Alpha is its  ability to use “free form” mathematical input -  just  type in what you want Wolfram
Alpha  to  do  for  you  in  ordinary  English  (other  language  input  is  planned  for  the  future)  and  Wolfram
Alpha will attempt to guess what you want and then will use Mathematica to obtain the answer. In fact,
the answers returned my Wolfram Alpha are generally more complete then Mathematica would normally
return (they can all  be obtained with Mathematica  but it  may require several  commands or even some
programming). Here is an example of computing the integral Ù x logHxL â x  with Wolfram Alpha. Just type:

“indefinite integral of x log(x) “ and you will  obtain the output shown below. In versions of Mathematica
earlier than 8, a very precise syntax would be needed to obtain the same result (version 8 of Mathemat-
ica can also use “free form” input).
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1. Basic Principles

� 1. Overview of Mathematica Features. Mathematica as a Calculator.

You can get a lot of information from the Help Browser (to access it press F1 or use the Help menu).

One  can use Mathematica just  like a calculator:  one types in formulas and Mathematica returns back
their values.  Just press SHIFT + ENTER (RETURN) to tell Mathematica to evaluate the input you have
given it.

Example.

2 + 2

( press SHIFT + ENTER after putting the cursor after 2 + 2 to see the output)

2 + 2

4

With a text - based interface, you interact with Mathematica just by typing successive lines of input, and
getting back successive lines of output on your screen.

At each stage, Mathematica prints a prompt of the form In[n] := to tell you that it is ready to receive input.
When you have entered your input, Mathematica processes it, and then displays the result with a label
of the form Out[n] =.
Different  text  -  based interfaces use slightly  different  schemes for  letting Mathematica know when you
have  finished  typing  your  input.With  some  interfaces  you  press  Shift  -  Return,  while  in  others  Return
alone is sufficient.

An important feature of Mathematica is its ability to handle formulas as well as numbers. Whenever you
use Mathematica, you are accessing the world' s largest collection of computational algorithms. Mathe-
matica knows about all the hundreds of special functions in pure and applied mathematics (e.g., Cheby-
shev polynomials, Bessel functions).

Example.   The  following  function  computes  the  10th  degree  Chebyshev  polynomial  and  the  next  one
draws the function  on the interval [-1, 1].

ChebyshevT@10, xD

-1 + 50 x2 - 400 x4 + 1120 x6 - 1280 x8 + 512 x10



Plot@ChebyshevT@10, xD, 8x, -1, 1<D

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Let's  see  what  happens  when  we  use  the  same  input  in  WolframAl-
pha:

Note the two links at the lower right hand corner: Download as PDF and Live Mathematica. The first one
is obvious. The second one needs the CDF Player plug-in to be installed. 

In  general,  Mathematica  notebooks  allow  importing  and  exporting  of  many  formats.  One  can  prepare
even a slide show in Mathematica.
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� Kernel and FrontEnd

Mathematica  consists  of  two  independent  computational  environments  called  the  FrontEnd  and  the
Kernel, which communicate by means of a protocol called MathLink.  The Kernel does all  the computa-
tions. The FrontEnd is what you see in front of you, including the window, menu, etc. You can use many
FrontEnds with one Kernel but the usual FrontEnd is what is know a notebook FrontEnd (there are also
ASCII front ends you can run using a terminal interface). 

The  Kernel  is  the  basic  programing  environment  and  in  fact  it  can  be  used  to  completely  control  the
FrontEnd. We will give a few examples, but we will not use much of this. For example:

nb1 = CreateDocument@8Plot@x^2, 8x, -1, 1<D<D

NotebookObjectB Untitled-18 F

ls = Notebooks@D

:NotebookObjectB Writing Assistant F,

NotebookObjectB Foundations of Programming in Mathematica Part 1 F,

NotebookObjectB Untitled-18 F, NotebookObjectB Untitled-13 F,

NotebookObjectB Untitled-11 F, NotebookObjectB Untitled-15 F,

NotebookObjectB NotebookClose - Wolfram Mathematica F,

NotebookObjectB Installed Add-ons - Wolfram Mathematica F, NotebookObjectB Untitled-7 F,

NotebookObjectB Untitled-6 F, NotebookObjectB Untitled-5 F,

NotebookObjectB Untitled-4 F, NotebookObjectB Untitled-3 F,

NotebookObjectB Untitled-2 F, NotebookObjectB Messages F>

SelectedNotebook@D

NotebookObjectB Foundations of Programming in Mathematica Part 1 F

SetSelectedNotebook@ls@@3DDD

NotebookObjectB Untitled-18 F

The FrontEnd itself can also be “programmed” independently of the Kernel. This will be more important
for us later, in building interfaces. 
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� Mathematica notebooks

Mathematica  is  one  of  the  largest  single  application  programs  ever  developed,  and  it  contains  a  vast
array  of  algorithms  and  important  technical  innovations.  Among  these  innovations  is  the  concept  of
platform - independent interactive documents known as notebooks.

Every  Mathematica  notebook  is  a  complete  interactive  document  combining  text,  tables,  graphics,
calculations,  and  other  elements.  A  Mathematica  notebook  consists  of  a  list  of  cells,  which  you  can
group (sections etc).

Exercise. Click on different brackets on the right  in this notebook with a right mouse button to find out
the style being used.

Palettes and buttons provide a simple but fully customizable point - and - click interface to Mathematica
(for Greek symbols, signs of integral, simple build - in functions, etc).
Recently  Wolfram Research has expanded the concept  of  a  notebook by introducing a new document
format  called CDF (“Computable Document Format”) which unlike traditional  notebooks allows interac-
tive “dynamic” content. 

� The Unifying Idea of Mathematica

Mathematica  is  built  on  the  powerful  unifying  idea  that  everything  can  be  represented  as  a  symbolic
expression.

� Main Features of Mathematica

Once one starts experimenting in Mathematica, one  immediately notices some of its main features.
1. One important feature of Mathematica that differs from other computer languages, and from conven-
tional mathematical notation, is that function arguments are enclosed in square brackets, not parenthe-
ses. Parentheses in Mathematica are reserved specifically for indicating the grouping of terms. There is
obviously a need to  distinguish giving arguments to a function from grouping terms together.
2. Names of built-in functions start with a capital letter.
3. Multiplication is represented either by * or by a space.
4. Powers are denoted by ^.
5. Numbers in scientific notation are entered, for example, as 2.5*^-4 or 2.5 10^-4.
6. There is a general convention in Mathematica that all  function names are spelled out as full  English
words,  unless  there  is  a  standard  mathematical  abbreviation  for  them.  The  great  advantage  of  this
scheme is that it is predictable. Once you know what a function does, you will usually be able to guess
exactly  what  its  name  is.  If  the  names  were  abbreviated,  you  would  always  have  to  remember  which
shortening of the standard English words was used.
7.  Another  feature of  built  -  in  Mathematica names is  that  they all  start  with  capital  letters.  The capital
letter convention makes it easy to distinguish built - in objects. If Mathematica used max instead of Max
to represent the operation of finding a maximum, then you would never be able to use max as the name
of one of your variables. In addition, when you read programs written in Mathematica, the capitalization
of built - in names makes them easier to pick out.
8. N is a function that turns exact numbers and certain symbols into approximate numbers. For example:

N@PiD

3.14159

N@Sqrt@2D, 30D

1.41421356237309504880168872421

Hence  N  cannot  be  used  for  a  function  or  a  variable  name.  The  same is  true  of  some other  symbols
written with a capital  letter  (e.g.  E,C).  For  that  reason it  is  important  to  follow the convention that  user
defined symbols begin with a small letter. 
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Hence  N  cannot  be  used  for  a  function  or  a  variable  name.  The  same is  true  of  some other  symbols
written with a capital  letter  (e.g.  E,C).  For  that  reason it  is  important  to  follow the convention that  user
defined symbols begin with a small letter. 

A quick access to help information is achieved by typing the question mark :

? FullForm

FullForm@exprD prints as the full form of expr, with no special syntax.  �

? Part

expr@@iDD or Part@expr, iD gives the ith part of expr.

expr@@-iDD counts from the end.

expr@@i, j, É DD or Part@expr, i, j, É D is equivalent to expr@@iDD@@ jDD É .

expr@@8i1, i2, É <DD gives a list of the parts i1, i2, É of expr.
expr@@m ;; nDD gives parts m through n.

expr@@m ;; n ;; sDD gives parts m through n in steps of s. �

The quick access to help is also by highlighting the word and then pressing F1.

To get help for the command/operator you know you need to type ? and the command/operator. If you
do not know the operator, search the Help Browser.

? >>

expr >> filename writes expr to a file. Put@expr1, expr2, ... ,
"filename"D writes a sequence of expressions expri to a file. More…

Mathematica understands lists as {a, b, c} (in the full form it is  List[a, b, c]). One can learn later on that
many  objects  in  Mathematica  are  written  by  using  lists.  For  instance,  a  matrix  can  be  inserted  in  the
following way: go to the main menu; insert; tables/matrices:

� � �

� � �

� � �

Next one just needs to put the brackets and fill in the matrix elements by clicking on each empty square : 

1 2 �

� � �

� � �

The result is :

1 2 3

2 3 4

5 6 7

The same matrix can be entered like this :

881, 2, 3<, 82, 3, 4<, 85, 6, 7<<

881, 2, 3<, 82, 3, 4<, 85, 6, 7<<
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% �� MatrixForm

1 2 3

2 3 4

5 6 7

Here % means the last expression. 

2 + 2

4

% + 4

8

%% + 2

6

Here %% means the last but one expression. 

Example. 

Plus@Power@x, 2D, Sqrt@xDD

x + x2

The same can be entered by either using palettes or by the following

sequence : Control key + 2 gives � ; next one needs to type in "x";

this gives x ; next + x. To type in the square one can type in alt +

6 which gives � and then type in 2 in the empty square.

One can type many symbols without using palettes. For instance, to type in Π,  one needs to press esc
then type in pi then press esc once again.   

Example. 

The use of Ctrl+6:

x2

esc+i+i+esc

ä

esc+pi+esc

Π

Alt+7 (applying to the blue bracket on the right): gives text in the notebook.

A very useful trick is the formula completion feature. Suppose, for example, you wish to use a function
whose name begins with Plot but you can’t quite remember the rest of it.  Just type in the beginning of
the name and press the Control key (Command key on the Macintosh) and the letter K. You will see a
pop up menu of all  functions whose name begins with Plot.  If  you decide you want to use the function
Plot3D you can type the name Plot3D and press Control and Shift keys together with the K key. You will
see a template:
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A very useful trick is the formula completion feature. Suppose, for example, you wish to use a function
whose name begins with Plot but you can’t quite remember the rest of it.  Just type in the beginning of
the name and press the Control key (Command key on the Macintosh) and the letter K. You will see a
pop up menu of all  functions whose name begins with Plot.  If  you decide you want to use the function
Plot3D you can type the name Plot3D and press Control and Shift keys together with the K key. You will
see a template:

Plot3DA f , 9 x , xmin , xmax =, 9 y , ymin , ymax =E

� An overview of programming techniques

For  most  of  the more complex problems that  one wants  to  solve with  Mathematica,  one has to  create
Mathematica programs oneself. Mathematica supports several styles of programming, and one is free to
choose the one, one is most comfortable with. However, it turns out that no single type of programming
suits all cases equally. As a result, it is useful to learn several different types of programming.

Traditional programming language such as C or Fortran use  procedural programming (assignments and
loops such as Do,  For,  While  and so on).  They also exist  in  Mathematica.  But  while  any Mathematica
program can, in principle, be written in a procedural way, this is rarely the best approach. In a symbolic
system  like  Mathematica,  functional  and  rule  -  based  programming  typically  yields  programs  that  are
more efficient, and easier to understand.

Some types of programming : 
Procedural Programming
List  -  based  Programming  (Many  operations  are  automatically  threaded  over  lists,  a  starting  point  to
learn).
Functional Programming
Rule - Based Programming
Mixed Programming Paradigms

There  are  typically  many  different  ways  to  formulate  a  given  problem  in  Mathematica.  In  almost  all
cases, however, the most direct, precise and simple formulations will be best.

There are dozen of definitions of the factorial function (see later on). 

� Expressions

All objects in Mathematica programming language are expressions. For example

a + b

a + b

82, 3, 5<

82, 3, 5<

StringTake@"hello", 4D

hell
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Sin@xD

Sin@xD

Sin@ΠD

0

First@8a, b, c<D

a

are all  different  kinds  of  expressions.   These expressions often look  like  mathematical  formulas (more
about  that  later  on),  which  makes them more  understandable and memorable  to  humans,  but  actually
that  have  an  internal  form  that  is  very  simple  and  very  consistent.  It  is  called  the  “Full  Form” of  an
expression and can be seen by applying the function FullForm to it (but there is a caveat, see below).

� FullForm of expressions

Each expression is either an Atom or has the form

F@a1, a2, ..., anD

where  F  is  called  the  Head  of  the  expression  and  a1,  a2,  are  expressions.  Examples  of  atoms  are
2,a,3/4,3.2, "cat". Whether something is an atom can be tested with the function AtomQ:

AtomQ@2D

True

AtomQ@82, 3<D

False

Expressions often do not look like their FullForms, for example  a+b has FullForm:

FullForm@a + bD

Plus@a, bD

Head@a + bD

Plus

Head@aD

Symbol
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Head@2D

Integer

FullForm@8a, b<D

List@a, bD

Head@8a, b<D

List

Note that atoms also have Head:

Head@2D

Integer

Head@"cat"D

String

Head@catD

Symbol

Note also that :

Head@xD

Symbol

x = 1

1

x + 2

3

Head@xD

Integer

Evaluation of x to 1 caused this to happen. You can see the original Head by preventing evaluating e.g.
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Head@Unevaluated@xDD

Symbol

2 + 3

5

FullForm@Hold@2 + 3DD

Hold@Plus@2, 3DD

ReleaseHold@%D

5

The full form of  

x = 1

is

FullForm@Hold@x = 1DD

Hold@Set@x, 1DD

Clear@xD

It is important to distinguish the assignment Set from Equal, which is usually written as == and has

FullForm@Hold@x � 1DD

Hold@Equal@x, 1DD

Clear@xD

x � 1

x � 1

x = 1;

x � 2

False

Clear@xD
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� Parts of Expressions

A very important skill is extracting parts of expressions. An expression is really a tree-like object, as can
be seen using the function TreeForm:

? TreeForm

TreeForm@exprD displays expr as a tree with different levels at different depths.

TreeForm@expr, nD displays expr as a tree only down to level n. �

g = a + b2
+ c3

+ d;

FullForm@gD

Plus@a, Power@b, 2D, Power@c, 3D, dD

TreeForm@gD

Plus

a Power

b 2

Power

c 3

d

Level@g, 81<D

9a, b2, c3, d=

Level@g, 82<D

8b, 2, c, 3<

Part@g, 0D

Plus
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g@@1DD

a

g@@2DD

b2

g@@3DD

c3

g@@3, 3DD

Part::partw : Part 3 of c
3
 does not exist. �

Ia + b2 + c3 + dMP3, 3T

g@@2, 2DD

2

g@@2, 0DD

Power

and so on. 

You can also do this from the back :

g@@-2, 1DD

c

g

a + b2 + c3 + d

g@@1 ;; 3DD

a + b2 + c3

a + b^2 + c^3

12 2. Language Basics.cdf



g@@2 ;; 4DD

b2 + c3 + d

Now, here comes a very nice and important fact: you can change an expression by an assignment to a
part of it. For example;

g@@1DD = x + y;

g

b2 + c3 + d + x + y

g@@3 ;; 4DD = z; g

1 + b2 + y + 2 z

� List, Vectors, Matrices, Tensors

A very important thing to notice that in Mathematica lists are just expressions with Head List:

m = 8a, b, c, d<;

Length@mD

4

List@a, b, c, dD

8a, b, c, d<

A matrix is simply a list of lists of the same length:

mat = 88a, b, d<, 8c, d, e<<

K
a b d
c d e

O

mat@@1, 1DD

a

mat@@2, 2DD

d
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mat@@All, 1DD

8a, c<

mat@@All, 2DD

8b, d<

mat@@1, AllDD

8a, b<

mat@@2, AllDD

8c, d<

We will later see how to easily create arbitrarily large matrices using the functions Table and Array. 

TableAi2, 8i, 1, 10<E

81, 4, 9, 16, 25, 36, 49, 64, 81, 100<

Table@i * j, 8i, 1, 5<, 8j, 1, 5<D

1 2 3 4 5
2 4 6 8 10
3 6 9 12 15
4 8 12 16 20
5 10 15 20 25

ã A note on forms of expressions.

We already  know that  a  Mathematica  expression  often  looks  different  to  human eyes  than  its  internal
form (FullForm). However, the situation is made more complicated, by the fact that traditional mathemati-
cal  notation is  not  unambiguous.  Because of  this   and for  reasons of  history Mathematica  has several
“forms” of  input  and  output.   The  first  versions  of  Mathematica  has  only  two  forms:  InputForm,  which
looked like a standard programming language (e.g.  Fortran)  way of  writing mathematical  formulas and
OutputForm,  which  is  a  little  more  like  usual  mathematics  and  has  become  completely  obsolete  (it
retained only for reasons of compatibility with very early Mathematica notebooks). Since then they have
both been replaced by StandardForm and TraditionalForm. StandardForm retains the basic principles of
InputForm but allows more usual mathematical expressions. TraditionalForm looks almost like the usual
mathematical notation. One can convert between these forms using the Convert To sub menu in the Cell
menu. One can also set the default forms for the Input and Output in the Preferences menu. 

ã Basic principles of InputForm (and StandardForm)

1. All built in functions start with a capital letter.

2. Square brackets [] are used as function brackets. 

3. (InputForm) The basic arithmetical operations are denoted by + (addition),* or space (multiplication) /
(division), ^ (power).

4.   There  are  the  following  inclusions  InputForm  Ì  StandardForm  Ì  TraditionalForm  but  not  in  the
opposite direction. 
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4.   There  are  the  following  inclusions  InputForm  Ì  StandardForm  Ì  TraditionalForm  but  not  in  the
opposite direction. 

ã Links

http://reference.wolfram.com/Mathematica/guide/Expressions.html

http:��reference.wolfram.com�mathematica�tutorial�FormsOfInputAndOutput.html

� 2. Working with Lists

One of the most common expressions in Mathematica are lists.

SolveAx3
� 1, xE

98x ® 1<, 9x ® -H-1L1�3=, 9x ® H-1L2�3==

% �� N

88x ® 1.<, 8x ® -0.5 - 0.866025 ä<, 8x ® -0.5 + 0.866025 ä<<

CoefficientList@a x^2 + b x + c, xD

8c, b, a<

Options@PlotD

:AlignmentPoint ® Center, AspectRatio ®

1

GoldenRatio
, Axes ® True,

AxesLabel ® None, AxesOrigin ® Automatic, AxesStyle ® 8<, Background ® None,
BaselinePosition ® Automatic, BaseStyle ® 8<, ClippingStyle ® None,
ColorFunction ® Automatic, ColorFunctionScaling ® True, ColorOutput ® Automatic,
ContentSelectable ® Automatic, CoordinatesToolOptions ® Automatic,
DisplayFunction ¦ $DisplayFunction, Epilog ® 8<, Evaluated ® Automatic,
EvaluationMonitor ® None, Exclusions ® Automatic, ExclusionsStyle ® None,
Filling ® None, FillingStyle ® Automatic, FormatType ¦ TraditionalForm,
Frame ® False, FrameLabel ® None, FrameStyle ® 8<, FrameTicks ® Automatic,
FrameTicksStyle ® 8<, GridLines ® None, GridLinesStyle ® 8<, ImageMargins ® 0.,
ImagePadding ® All, ImageSize ® Automatic, ImageSizeRaw ® Automatic, LabelStyle ® 8<,
MaxRecursion ® Automatic, Mesh ® None, MeshFunctions ® 8ð1 &<, MeshShading ® None,
MeshStyle ® Automatic, Method ® Automatic, PerformanceGoal ¦ $PerformanceGoal,
PlotLabel ® None, PlotPoints ® Automatic, PlotRange ® 8Full, Automatic<,
PlotRangeClipping ® True, PlotRangePadding ® Automatic, PlotRegion ® Automatic,
PlotStyle ® Automatic, PreserveImageOptions ® Automatic, Prolog ® 8<,
RegionFunction ® HTrue &L, RotateLabel ® True, Ticks ® Automatic,

TicksStyle ® 8<, WorkingPrecision ® MachinePrecision>

Let us also recall that the matrix is entered by using lists :
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881, 2, 3<, 82, 3, 4<, 834, 5, 3<< �� MatrixForm

1 2 3

2 3 4

34 5 3

 Let  us  learn   how  to  generate  lists  and  what  basic  operations  one  can  perform  with  them.   Another
useful command is Table

Table@i^2 + 2, 8i, -1, 2<D

83, 2, 3, 6<

% �� TableForm

3

2

3

6

One can generate not only numbers but also other expressions :

Array@a, 3D

8a@1D, a@2D, a@3D<

Some commonly used objects are already defined in Mathematica. For instance, the identity matrix :

IdentityMatrix@3D �� MatrixForm

1 0 0

0 1 0

0 0 1

For the matrices Mathematica has a lot of build - in operations

Eigenvalues@881, 2<, 83, 2<<D

84, -1<

Eigenvectors@881, 2<, 83, 2<<D

882, 3<, 8-1, 1<<

Basic operations for the lists include the following :

81, 2, 3< + 81, 2, 3<

82, 4, 6<
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81, 2, 3< + 1

82, 3, 4<

A scalar product is given by a dot

8a, b, c<.8s, d, f<

b d + c f + a s

However, one needs to be careful with length of the objects.

81, 2, 3< + 81, 2, 3, 4<

Thread::tdlen : Objects of unequal length in 81, 2, 3< + 81, 2, 3, 4< cannot be combined. �

81, 2, 3< + 81, 2, 3, 4<

Other useful operations include

Prepend@8a, b, c<, dD

8d, a, b, c<

Append@8a, b, c<, dD

8a, b, c, d<

Union@8a, b, c<, 8a, b, d<D

8a, b, c, d<

Join@8a, b, c<, 8a, b, d<D

8a, b, c, a, b, d<

Take@8a, b, c, e<, 2D

8a, b<

Also have a look at commands Insert, Delete and many others in the help. The name of the command
suggests unambiguously what it performs with a given list.

To get an element of the list one indicates its position.

8a, b, c<@@1DD

a
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8a, b, c, d<@@-1DD

d

Here - 1 means the first element counted from the end.

8a, b, c, d<@@2DD

b

If you do not know how many elements are in the list, you can always verify this by using Length

Length@8a, b, v<D

3

Length@8a, b, 8v, w<<D

3

A similar command for the dimension of the list is Dimensions

Dimensions@8a, b, 8v, w<<D

83<

Dimensions@88a, b<, 8v, w<<D

82, 2<

This counts the elements of the first level in the list.

In applications one often encounters the problem to verify whether a given element is in the list and if so,
one might require further its position.

Position@88a, b, c<, 8a, f, g<<, aD

881, 1<, 82, 1<<

Here Position takes account of the nesting of lists. 

Since the lists can be nested, it is useful to know that they can always be flattened.

? Flatten

Flatten@listD flattens out nested lists.

Flatten@list, nD flattens to level n.

Flatten@list, n, hD flattens subexpressions with head h.

Flatten@list, 88s11, s12, É <, 8s21, s22, É <, É <D

flattens list by combining all levels sij to make each level i in the result.  �
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88a, b, c<, 8a, f, g<< �� Flatten

8a, b, c, a, f, g<

To get rid of repeated elements one uses Union

% �� Union

8a, b, c, f, g<

From a given list one can get a list of permutations and other lists of a given length with all elements of
the original list

Permutations@8a, b, c<D

88a, b, c<, 8a, c, b<, 8b, a, c<, 8b, c, a<, 8c, a, b<, 8c, b, a<<

Tuples@80, 1<, 3D

880, 0, 0<, 80, 0, 1<, 80, 1, 0<, 80, 1, 1<, 81, 0, 0<, 81, 0, 1<, 81, 1, 0<, 81, 1, 1<<

Accumulate@8a, b, c, d, e, f<D

8a, a + b, a + b + c, a + b + c + d, a + b + c + d + e, a + b + c + d + e + f<

� Apply and Map

? Apply

Apply@ f , exprD or f �� expr replaces the head of expr by f .

Apply@ f , expr, levelspecD replaces heads in parts of expr specified by levelspec.  �

Let us form a new expression from the list and the other way round.

FullForm@8a, b, c<D

List@a, b, cD

Times �� 8a, b, c<

a b c

FullForm@a b cD

Times@a, b, cD
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List �� Ha b cL

8a, b, c<

Another example is 

Plus �� 8a, b, c<

a + b + c

A  more  complicated  example  is  to  generate  a  list  of  coefficients  (maybe  useful  for  polynomial
expressions)

Subscript@A, ðD & �� Table@i, 8i, 1, 10<D

8A1, A2, A3, A4, A5, A6, A7, A8, A9, A10<

Here /@ means Map.  

? Map

Map@ f , exprD or f �� expr applies f to each element on the first level in expr.

Map@ f , expr, levelspecD applies f to parts of expr specified by levelspec.  �

Here there is a trivial example of forming a list. 

Function@x, x^2D �� Table@i, 8i, 1, 10<D

81, 4, 9, 16, 25, 36, 49, 64, 81, 100<

k = Table@i, 8i, 1, 10<D

81, 2, 3, 4, 5, 6, 7, 8, 9, 10<

Therefore, the command /@ works as follows. It applies the function x Ì x2 to every element of the list
k.  (Here we  meet  an example of a pure function, the concept which will be discused below.) 

Evaluation

A very important concept in Mathematica  is that of evaluation. In Mathematica  evaluation always takes
place after you write some input and press Shift + Enter. The process of evaluation is quite complicated,
and follows a definite sequence of steps. Understanding this process is important in advanced Mathemat-
ica programming and we will return to this in the future.  Often the evaluation process takes place even if
nothing seems to happen. For example:
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FullForm@Hold@2 �3DD

Hold@Times@2, Power@3, -1DDD

2

3

2

3

FullForm@2 � 3D

Rational@2, 3D

2 + 3 I

2 + 3 ä

FullForm@Hold@2 + 3 IDD �� InputForm

FullForm[Hold[2 + 3*I]]

FullForm@2 + 3 äD

Complex@2, 3D

AtomQ@Complex@2, 3DD

True

Head@Unevaluated@2 + 3 IDD

Plus

Head@2 + 3 ID

Complex

An interesting special case are graphics. 
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gr = PlotAx2, 8x, -1, 1<E

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

Short@InputForm@grD, 5D

Graphics@
888<, 8<, 8Hue@0.67, 0.6, 0.6D, Line@88-0.9999999591836735, 0.9999999183673486<,

<< 272 >>, 80.9999999591836735, << 1 >><<D<<<, 8<< 6 >><D

We  see  that  a  plot  of  a  function  is  also  a  Mathematica  Graphics  object.   One  can  therefore  use  the
Mathematica programing language to control every detail of a graphic. Graphic programming in Mathe-
matica is a whole big subject, but we will see a few examples later on. 

It  is possible to think of Mathematica  as an algebraic object, somewhat like a ring, with partial addition
and  multiplication.  This  means  that  you  can  perform algebraic  operations  which  are  purely  formal,  for
example, you can raise a number to the power of a graphic:

2gr

2-1.0 -0.5 0.5 1.0

0.2
0.4
0.6
0.8
1.0

In  some  situations  arithmetical  operations  on  objecs  of  different  kind  are  defined,  for  example,  it  is
possible to add a number (or a symbol) to a list:

81, 2, 3< + 1

82, 3, 4<

However, in certain cases, trying to perform such an operation on objects of different kind will  cause a
error message:
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81, 2, 3< + 81, 3<

Thread::tdlen : Objects of unequal length in 81, 2, 3< + 81, 3< cannot be combined. �

81, 3< + 81, 2, 3<

Here is an example of abstract algebraic manipulation performed on strings:

Distribute@H"cat" + "dog"L *"mouse"D

cat mouse + dog mouse

� The evaluation loop.

When you enter an input expression Mathematica’s Kernel evaluates in a very definite order. Understand-
ing  this  order  is  important  for  Mathematica  programming.  The evaluation order  will  be  described care-
fully later once we learn about rules and patterns. However, the basic idea is this:  Mathematica  evalu-
ates  each  part  of  the  expression  by  turn,  starting  with  the  Head.   It  applies  all  rules  it  knows  for  the
expression,  first  user  defined  then  built  in  ones,  until  it  can  no  longer  find  a  rule.  Then  it  stops  and
“returns” the  result.  (Sometimes  this  evaluation  will  not  stop  and  we  get  into  an  infinite  loop.  Actually
Mathematica  will  almost  always detect  such situations and will  stop,  unless we change the defaults  to
make it run for ever). 

Programming using Patterns and Rules

Mathematica allows many different styles of programming. There is one style that, although not  unique
to  Mathematica,  distinguishes  it  from  most  other  similar  systems.  This  is  the  possibility  of  using
"patterns" and "re-write rules" or just "rules". 
The basic concepts in this kind of programming are  "rule" and "pattern".  Rules can be local and global. 

� Local Rules

A local rule always has the form

?Rule

lhs -> rhs or lhs ® rhs represents a rule that transforms lhs to rhs.  �

or

?RuleDelayed

lhs :> rhs or lhs ¦ rhs represents a rule that transforms lhs to rhs, evaluating rhs only after the rule is used.  �

Note that:
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FullForm@lhs ® rhsD

Rule@lhs, rhsD

FullForm@lhs :> rhsD

RuleDelayed@lhs, rhsD

The  difference  between  Rule  and  RuleDelayed  will  be  explained  below.  Most  often  Rule  is  used
together with the function ReplaceAll (see also Replace):

?ReplaceAll

expr �. rules applies a rule or list of rules in an
attempt to transform each sub part of an expression expr. More…

Here are some examples of using  rules (in some of these examples the output appears in Traditional-
Form). 

x2
+ Sin@x yD + 3 �.8x ® Π, y ® 2 Π<

3 + Π
2

+ sinI2 Π
2M

Now we use a more general rule. This time we use a "pattern"

? _

_ or Blank@D is a pattern object that can stand for any Mathematica expression.

_h or Blank@hD can stand for any expression with head h.  �

x2
+ Sin@x yD + 3 �. _ ® Π

Π

The reason for the above result is that ReplaceAll starts looking for a match starting at the top level of
the  expression  and  when  it  finds  a  match  it  stops  looking  for  more.  If  we  want  to  find  a  match  at  a
different level we can use the function Replace with a level specification. For example, here we replace
everything on level 3 of the expression with Π. 

ReplaceAx2
+ Sin@x yD + 3, _ ® Π, 83<E

x2
+ 3 + sinIΠ

2M

LevelAx2
+ Sin@x yD + 3, 83<E

8x, y<

ReplaceAx2
+ Sin@x yD + 3, _ ® Π, 82<E

3 + Π
Π
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x2
+ Sin@x yD + 3 �. Sin@x_D ¦ Sin@x^2D

sinIx2 y2M + x2
+ 3

x2
+ Sin@x yD + 3 �. _? Hð > 2 &L ® Π

x2
+ sinHx yL + Π

x2
+ Sin@x yD + 3 �. a_ �; a > 2 ® Pi

x2
+ sinHx yL + Π

x2
+ Sin@x yD + 3 �. _? HAtomQ@ðD &L ® Π

ΠHΠ, ΠHΠ, ΠL, ΠHΠHΠ, ΠLLL

x2
+ Sin@x yD + 3 �. x_Times ® Π �4

x2
+

1

2
+ 3

FullFormAx2
+ Sin@x yD + 3E

Plus@3, Power@x, 2D, Sin@Times@x, yDDD

x2
+ Sin@x yD + 3 �. _Power ® Π �4

sinHx yL +
Π

4
+ 3

These examples illustrate  some of  the  very  many ways of  forming patterns in  Mathematica.  The most
basic pattern is x_ which stands for anything that is (locally) assigned the name x. 

Here is an example where Rule and RuleDelayed give different answers:

a = 0;

Sin@2D �. a_Integer ® a2

0

Sin@2D �. a_Integer :> a2

sinH4L

Before using a rule it  is a good idea to look at the FullForm of an expression. Here are some possible
“traps”:

2. Language Basics.cdf 25



Clear@aD

2 +
1

2
�. 2 ® a

a +
1

2

FullFormB 2 +
1

2
F

Plus@Power@2, Rational@-1, 2DD, Power@2, Rational@1, 2DDD

UnevaluatedB 2 +
1

2
F �.HoldPatternB 2 F ® a

a +
1

a

2 +
1

2
�. 2^Rational@x_, y_D ® a^x

a +
1

a

2 +
1

2
�. : 2 ® a,

1

2
® 1 �a>

a +
1

a

Rule based programming is very convenient when dealing with graphics.

gr = Disk@80, 0<, 1D

Disk@80, 0<, 1D
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Graphics@gr, ImageSize ® SmallD

Graphics@8Red, gr<, ImageSize ® TinyD

Graphics@8Red, gr<, ImageSize ® 8100, 100<D �. Disk ® Circle

gr2 = PolarPlotBSin@3 ΘD, :Θ, 0,
Π

3
>, ImageSize ® SmallF

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

gr2 �. Line ® Polygon

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

2. Language Basics.cdf 27



Many Mathematica functions return a list of rules as the output.

rules = SolveAx3
+ 3 x + 4 � 0, xE

:8x ® -1<, :x ®
1

2
K1 - ä 15 O>, :x ®

1

2
K1 + ä 15 O>>

Note that this is actually a list of lists, each containing one rule. 

This  is  very  convenient,  because we can  use  ReplaceAll  to  substitute  these  rules  into  other  formulas.
For example:

x �. rules

:-1,
1

2
K1 - ä 15 O,

1

2
K1 + ä 15 O>

x3
+ 3 x + 4 �. rules �� Simplify

80, 0, 0<

Simplify@%D

80, 0, 0<

Here is a similar example with FindRoot instead of Solve

FindRoot@x ã
-x

� 0.2, 8x, 0.1<D

8x ® 0.259171<

x Exp@-xD � 0.2 �. %

True

ã Links

http : // reference.wolfram.com/mathematica/tutorial/PatternsAndTransformationRules.html

� Global Rules ("Functions")

Here is one way to define  a "function" in Mathematica:

Clear@ f D

f @x_D := x2
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f@ID

-1

Clear@aD

f @aD

a2

f@3D

9

?f

Global`f

f@x_D := x2

DownValues@fD

9HoldPattern@ f Hx_LD ¦ x2=

Although  people often call f  defined in this way a function, actually it  is only a "global rule". More pre-
cisely, when a definition of this kind is evaluated, Mathematica creates a rule for the symbol f , which it
uses every time when f  is used. The rule is stored as a DownValue of f :

DownValues@ f D

9HoldPattern@ f Hx_LD ¦ x2=

9HoldPattern@ f Hx_LD ¦ x2=

Here x_ is  a "pattern",  which stands for  "anything",  with a temporary name "x".  The rule says "change

f(anything)  to  anything2".  HoldPattern  prevents  evaluation  of  f(x_)  (which  would  otherwise  be  replaced
by x_2 but  f[x_] is treated as a pattern for matching purposes.

So  what  happens when we evaluate  definitions  of  this  kind  is  this:   Mathematica  makes  certain  rules,
stores them, and then applies them in a certain order. Here is an example:

Clear@"Global`*"D

f @x_RealD := 3

f @1D := 2

f @x_SymbolD := x2
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f @x_IntegerD := 5

DownValues@ f D

9HoldPattern@ f H1LD ¦ 2, HoldPattern@ f Hx_RealLD ¦ 3, HoldPattern@ f Hx_SymbolLD ¦ x2, HoldPattern@ f Hx_IntegerLD ¦ 5=

DownValues@fD = Rest@DownValues@fDD

9HoldPattern@ f Hx_RealLD ¦ 3, HoldPattern@ f Hx_SymbolLD ¦ x2, HoldPattern@ f Hx_IntegerLD ¦ 5=

DownValues@fD

9HoldPattern@ f Hx_RealLD ¦ 3, HoldPattern@ f Hx_SymbolLD ¦ x2, HoldPattern@ f Hx_IntegerLD ¦ 5, HoldPattern@ f Hx_LD ¦ 0=

f@2 � 3D

0

f@x_D := 0

f@"cat"D

f HcatL

f@1D

5

f@x_D := 0

f@"dog"D

0

Clear@fD

DownValues@fD

8<

f @2D

5
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f @7D

5

f @1.1D

3

f @aD

a2

f @"cat"D

f HcatL

Map@ f , 8.5, 1, a<D

93, 2, a2=

The order in which rules are applied by Mathematica is roughly determined by two facts; more specific
rules are applied before more general rules, and rules of equal generality are applied in the order they
are entered. 

In addition to DownValues there are also OwnValues and UpValues  (and some other Values) created
as follows:

Clear@aD

a = 1; OwnValues@aD

8HoldPattern@aD ¦ 1<

ClearAll@bD;

b �: Sin@bD = 2;

b �: Cos@bD = 2;

cos2HbL + sin2HbL

8

UpValues@bD

8HoldPattern@cosHbLD ¦ 2, HoldPattern@sinHbLD ¦ 2<

When an  expression is evaluated, Mathematica applies the rules contained in UpValues, DownValues,
and  so  on  in  a  certain  order,  after  which  it  applies  the  built-in  rules.  It  keeps  evalutating  the  resulting
expression  until  it  stops  changing.  Note  also  that  certain  built  in  rules  are  applied  by  Mathematica
automatically on evaluation but others require using a special function such as Simplify or FullSimplify.
For example the transformation

2. Language Basics.cdf 31



When an  expression is evaluated, Mathematica applies the rules contained in UpValues, DownValues,
and  so  on  in  a  certain  order,  after  which  it  applies  the  built-in  rules.  It  keeps  evalutating  the  resulting
expression  until  it  stops  changing.  Note  also  that  certain  built  in  rules  are  applied  by  Mathematica
automatically on evaluation but others require using a special function such as Simplify or FullSimplify.
For example the transformation

Clear@aD

an am

am+n

while

cosHΑL2
+ sinHΑL2

sin2HΑL + cos2HΑL

does not automatically simplify to 1 but 

SimplifyAcos2HbL + sin2HbLE

8

Some simplifications only work with specific assumptions:

SimplifyB x2 F

x2

AssumingBx ³ 0, SimplifyB x2 FF

x

AssumingBx <= 0, SimplifyB x2 FF

-x

Mathematica  generally  tries  to  apply  any  transformations  it  knows  to  an  expression  until  it  no  longer
changes.  However, this is not the case when we use ReplaceAll.  ReplaceAll looks for patterns in all the
parts  of  an  expression,  but  only  looks  for  one match in  each part.  So,  if  we have only  more than one
rule, we may not obtain all the transformations we wish to get:

rules = 8Log@x_ y_D ¦ Log@xD + Log@yD, Log@x_^k_D ¦ k Log@xD<;
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LogB a Ib cdM
e

F �.rules

1

2
logIa Ib cdM

e
M

In order to obtain all transformations we should use ReplaceRepeated (//.) instead of ReplaceAll (/.).

LogB a Ib cdM
e

F ��.rules

1

2
HlogHaL + e HlogHbL + d logHcLLL

Another important thing: Options of Mathematica’s functions are given as Rules. 

PlotAx2, 8x, 0, 1<E

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Options@PlotD

:AlignmentPoint ® Center, AspectRatio ®
1

Φ
, Axes ® True, AxesLabel ® None, AxesOrigin ® Automatic,

AxesStyle ® 8<, Background ® None, BaselinePosition ® Automatic, BaseStyle ® 8<, ClippingStyle ® None,
ColorFunction ® Automatic, ColorFunctionScaling ® True, ColorOutput ® Automatic,
ContentSelectable ® Automatic, DisplayFunction ¦ $DisplayFunction, Epilog ® 8<, Evaluated ® Automatic,
EvaluationMonitor ® None, Exclusions ® Automatic, ExclusionsStyle ® None, Filling ® None,
FillingStyle ® Automatic, FormatType ¦ TraditionalForm, Frame ® False, FrameLabel ® None,
FrameStyle ® 8<, FrameTicks ® Automatic, FrameTicksStyle ® 8<, GridLines ® None, GridLinesStyle ® 8<,
ImageMargins ® 0., ImagePadding ® All, ImageSize ® Automatic, LabelStyle ® 8<, MaxRecursion ® Automatic,
Mesh ® None, MeshFunctions ® 8ð1 &<, MeshShading ® None, MeshStyle ® Automatic,
Method ® Automatic, PerformanceGoal ¦ $PerformanceGoal, PlotLabel ® None, PlotPoints ® Automatic,
PlotRange ® 8Full, Automatic<, PlotRangeClipping ® True, PlotRangePadding ® Automatic, PlotRegion ® Automatic,
PlotStyle ® Automatic, PreserveImageOptions ® Automatic, Prolog ® 8<, RegionFunction ® HTrue &L,

RotateLabel ® True, Ticks ® Automatic, TicksStyle ® 8<, WorkingPrecision ® MachinePrecision>
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PlotAx2, 8x, 0, 1<, Axes ® False, Frame ® True, GridLines ® Automatic, PlotStyle ® 8Red, Dashing@0.01D<E

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

� The difference between := and =

The difference between :=and= is exactly the same as that between ¦ and ®. Note these FullForms: 

FullForm@Hold@a = 3DD

Hold@Set@a, 3DD

FullForm@Hold@a := 3DD

Hold@SetDelayed@a, 3DD

Consider the following two definitions:

f @p_D := Expand@pD

g@p_D = Expand@pD;

?=

lhs = rhs evaluates rhs and assigns the result to be
the value of lhs. From then on, lhs is replaced by rhs whenever
it appears. 8l1, l2, ... < = 8r1, r2, ... < evaluates the ri, and

assigns the results to be the values of the corresponding li. More…

?:=

lhs := rhs assigns rhs to be the delayed value
of lhs. rhs is maintained in an unevaluated form. When lhs

appears, it is replaced by rhs, evaluated afresh each time. More…

If we apply them to an expression like Ha + bL3 we will get quite different results:
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f AHa + bL3E

a3
+ 3 b a2

+ 3 b2 a + b3

gAHa + bL3E

Ha + bL3

The reason is that = evaluates the right hand side before assigning the evaluated value to the left hand
side, while := assigns the unevaluated right hand side to the left hand side.

ã Links

http : // reference.wolfram.com/mathematica/tutorial/ManipulatingValueLists.html

http : // reference.wolfram.com/mathematica/tutorial/ManipulatingOptions.html

Functions and Functional Programming

� Pure Functions

In  addition  to  functions  defined  by  means  of  global  rules  Mathematica  also  has  "genuine  functions",
defined as follows:

FunctionAx, x3E@cD

c3

Note  that  such  a  function  does  not  need  to  have  a  name  (so  it  is  called  an  anonymous  function),
although we can of course give it a name:

f = FunctionAx, x3E;

f @3D

27

Clear@ f D

OwnValues@ f D

9HoldPattern@ f D ¦ FunctionAx, x3E=

We can also, of course, in the same way, construct functions of several variables.
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FunctionA8x, y<, x3
+ y2E@4, 2D

68

There  are  two  problems  with  this  approach.  First,  it  is  inconvenient  to  use  letters  for  variable  names.
This problem is solved by using the notation #1, #2 ,... for the first, second, third etc., arguments. Thus:

FunctionAð12
+ ð22E@1, 5D

26

Lastly, the word Function can be replaced by the shorthand & after the end of the function, as in

ð12
+ ð22 &@2, 3D

13

� Predicates (Boolean Functions)

A  common  class  of  functions  are  functions  whose  value  are  the  Boolean  constants  True  and  False.
Such functions are called predicates. Most built in Mathematica predicates have names that end in Q:

PrimeQ@25D

False

PrimeQ@18D

False

EvenQ@7D

False

Here are two ways of defining a predicate that test is a number is larger than 5:

LargerThanFive@n_D := n > 5

LargerThanFive@1D

False

LargerThanFive@pD

p > 5

Here is the same thing done using a pure function
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ð > 5 &@7D

True

Such pure functions can be used in patterns:

Clear@ f D

f @x_? Hð > 5 &LD := x2

f @x_? Hð £ 5 &LD := x3

Plot@ f @xD, 8x, 0, 11<D

2 4 6 8 10

20

40

60

80

100

120

Plot@ f @xD, 8x, 0, 11<, Exclusions ® 85<D

2 4 6 8 10

20

40

60

80

100

120

� Functions that take Functions as arguments

In functional programming a very important role is played by functions that take functions as arguments.
The most important of these are Map and Apply:

Clear@ f D
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Map@ f , 8a, b, c, d<D

8 f HaL, f HbL, f HcL, f HdL<

MapA f , x2 y3E

f Ix2M f Iy3M

MapA f , x2 y3, 81<E

f Ix2M f Iy3M

MapA f , x2 y3, 82<E

f HxL f H2L f HyL f H3L

Apply@ f , g@x, yDD

f Hx, yL

Apply@Plus, x* yD

x + y

Apply@Times, x + yD

x y

Apply@Times, Unevaluated@2 + 3DD

6

Apply@ f , g@h@xD, k@yDD, 81<D

gH f HxL, f HyLL

Short notation:

Map@ f , exprD

f �� expr

Apply@ f , exprD

f �� expr
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� Attributes and Listability

The behavior of Mathematica functions and global rules is affected by so called Attributes. Each built-in
function has some attributes, for example

Attributes@SinD

8Listable, NumericFunction, Protected<

Attributes@PlusD

8Flat, Listable, NumericFunction, OneIdentity, Orderless, Protected<

The most important attribute of functions is the attribute Listable. Let's explain briefly what it does.

Clear@ f D

ls = Range@10D

81, 2, 3, 4, 5, 6, 7, 8, 9, 10<

Map@ f , lsD

8 f H1L, f H2L, f H3L, f H4L, f H5L, f H6L, f H7L, f H8L, f H9L, f H10L<

If we give f  the Attribute Listable we will not need to use Map.

SetAttributes@ f , ListableD

f @lsD

8 f H1L, f H2L, f H3L, f H4L, f H5L, f H6L, f H7L, f H8L, f H9L, f H10L<

In addition

f @8a, b<, 8c, d<D

8 f Ha, cL, f Hb, dL<

f @a, 8b, c<D

8 f Ha, bL, f Ha, cL<

The attribute Listable of Plus is the reason for the following behavior:

81, 2, 3< + 84, 5, 6<

85, 7, 9<
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1 + 82, 3, 4, 5<

83, 4, 5, 6<

The attributes Orderless, Flat and OneIdentity are interesting, but complicated. Let’s  see an illustration

ClearAll@fD

f@a, bD �. f@b, x_D ® g

f Ha, bL

SetAttributes@f, OrderlessD

f@a, bD �. f@b, x_D ® g

g

f@a, b, cD �. f@a, f@b, cDD ® g

f Ha, b, cL

SetAttributes@f, FlatD

f@a, b, cD �. f@a, f@b, cDD ® g

g

ClearAll@fD

Another group of important attributes are HoldFirst, HoldAll, HoldRest

Attributes@SetD

8HoldFirst, Protected, SequenceHold<

Attributes@SetDelayedD

8HoldAll, Protected, SequenceHold<

ClearAll@fD

SetAttributes@f, HoldFirstD

f@x_, y_D := Hx = y^2L
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x = 3;

f@x, 2D;

x

4

ã Links

http : // reference.wolfram.com/mathematica/tutorial/PureFunctions.html

http : // reference.wolfram.com/mathematica/tutorial/ApplyingFunctionsToListsAndOtherExpressions.html

http : // reference.wolfram.com/mathematica/tutorial/Attributes.html

http : // reference.wolfram.com/mathematica/tutorial/SelectingPartsOfExpressionsWithFunctions.html
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3. An Overview of Graphics
One  can use Mathematica to make 2 D and 3 D graphics. It is perhaps the most straightforward and, at
the same time, the most complicated section. It is straightforward since all the commands and properties
one  can  find   in  the  Help  Browser.  However,  the  complicated  part  is  to  find  the  property   one  needs
among hundreds of similar ones.  Below there are only examples of some of the most commongly used
graphic  features.  Moreover,  the  older  versions  of  Mathematica  might  have  different  names  and  com-
mands. The following pictures are drawn in Mathematica 7. The pictures are mostly self-explanatory and
for the useage of unknown functions the reader is referred to the documentation center.

PlotASinAx2E, 8x, 0, 4<, PlotRange ® 80, 1.2<E
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1.2

ParametricPlot3D@8Sin@zD Sin@tD, Sin@zD Cos@tD, z<,
8z, -Π, Π<, 8t, 0, 2 Π<, PlotRange ® 880, 1<, 80, 1<, 80, 1<<D
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PlotAx5 - 4.5 x4 + 2.1 x2 - 7, 8x, -10, 14<, PlotRange ® AllE

-10 -5 5 10

-100 000

100 000

200 000

300 000

Graphics@Circle@80, 0<, 1D, PlotLabel ® "circle"D

circle

Graphics@Circle@80, 0<, 1D, AspectRatio ® 1 � 2, PlotLabel ® "ellipse"D

ellipse
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Graphics@Circle@80, 0<, 1D, Axes ® AutomaticD

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

PlotBSin@xD, 8x, 0, 2 Π<, Ticks ® ::0,
Π

2
, Π,

3 Π

2
, 2 Π>, Automatic>F

Π

2
Π

3 Π

2
2 Π

-1.0

-0.5

0.5

1.0
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Plot@Sin@xD, 8x, 0, 2 Π<, AxesStyle ® 8RGBColor@1, 0, 0D, Thickness@0.01D<D

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

Plot@Sin@xD, 8x, 0, 2 Π<, Frame ® TrueD

0 1 2 3 4 5 6
-1.0

-0.5

0.0

0.5

1.0

PlotBLog@xD + SinBx + 2 Sin@xDF, 8x, 0, 10<, GridLines ® AutomaticF

2 4 6 8 10
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data = Table@Sin@xD + Random@Real, 8-0.1, 0.1<D, 8x, 0, 2 Π, 0.1<D

8-0.0994549, 0.0025176, 0.169147, 0.35959, 0.426721, 0.504849, 0.5569,
0.629977, 0.689323, 0.700252, 0.881904, 0.895217, 1.0026, 1.00545, 1.06306,
1.009, 0.983381, 1.07258, 0.893839, 0.900578, 0.940057, 0.831201, 0.780229,
0.703249, 0.705678, 0.563779, 0.416756, 0.420854, 0.4279, 0.279133,
0.150118, -0.0507052, -0.0374291, -0.134788, -0.186977, -0.347078,
-0.392135, -0.448773, -0.520907, -0.595565, -0.790225, -0.918132,
-0.800616, -0.878242, -0.915784, -0.945376, -0.994464, -1.01954, -1.09056,
-1.01561, -0.960952, -0.838909, -0.970764, -0.805304, -0.68379, -0.626348,
-0.639521, -0.64668, -0.544192, -0.398389, -0.238055, -0.25922, -0.15363<

ListPlot@dataD

10 20 30 40 50 60

-1.0

-0.5

0.5

1.0

ListLinePlot@dataD

10 20 30 40 50 60
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Plot@8BesselJ@2, zD, BesselJ@3, zD, BesselJ@4, zD<,
8z, -10, 16<, PlotStyle ® 8Hue@0.5D, Hue@0.6D, Hue@0.7D<D

-10 -5 5 10 15

-0.4

-0.2

0.2

0.4

Plot3D@Sin@x yD, 8x, 0, 2 Π<, 8y, 0, 2 Π<, PlotPoints ® 40D

0

2

4

6 0

2

4

6

-1.0

-0.5

0.0

0.5

1.0

6 3. Graphics.nb



Plot3D@Sin@x yD, 8x, 0, 2 Π<, 8y, 0, 2 Π<, PlotPoints ® 10D
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Plot3DA4 ã
-Hx-1L2-Hy-2L2

, 8x, -2, 2<, 8y, -3, 3<,

PlotRange -> All, AxesLabel -> 8"x", "y", "z"<E
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Show@%, ViewPoint -> 81.2, 1.2, 1.2<D
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Plot3DA4 ã
-Hx-1L2-Hy-2L2

, 8x, -2, 2<, 8y, -3, 3<,

PlotRange -> All, AxesLabel -> 8"x", "y", "z"<E
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Show@%, ViewVertical ® 81, 0, 0<D
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x
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4 z

Plot@Sin@xD, 8x, 0, 2 Π<, Background ® GrayLevel@0.5DD
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Quit@D
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PolyhedronData@"Dodecahedron"D

ListPlot3D@Table@Mod@y, xD, 8x, 10, 30<, 8y, 10, 30<DD

5

10

15

20

5

10

15

20

0

10

20

The function Show is used to combine several graphics togather. 

plot1 = Plot@Sin@xD, 8x, -2 Pi, 2 Π<, PlotStyle ® RedD;

plot2 = Plot@Sin@2 xD, 8x, -2 Pi, 2 Π<, PlotStyle ® GreenD;

plot3 = Graphics@8Yellow, Circle@80, 0<, 1D<D;
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Show@plot1, plot2, plot3, AspectRatio ® AutomaticD

-6 -4 -2 2 4 6

-1.0

-0.5

0.5

1.0

Graphics[primitives,  options]represents  a  two-dimensional  graphical  image  (circle,  disc,  point,  line,
polygon, ... ).

vertices = 880, -1<, 81, 0<, 80, 1<, 8-1, 0<, 80, -1<<;

p = Graphics@8RGBColor@1, 0, 0D, Polygon@verticesD<D;

l = Graphics@8Thickness@.02D, RGBColor@0, 0, 1D, Line@verticesD<D;

Show@p, lD

p1 = Plot@Sin@xD, 8x, 0, 2 Π<D

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0
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p2 = Plot@Sin@2 xD, 8x, 0, 2 Π<D;

GraphicsGrid@88p1, p2<<D

1 2 3 4 5 6
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0.5
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GraphicsGrid@88p1<, 8p2<<D
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RandomReal@80, 1<, 824, 2<D

880.455485, 0.477362<, 80.70587, 0.75487<, 80.554577, 0.621808<,
80.801264, 0.342213<, 80.348274, 0.598254<, 80.378546, 0.520606<,
80.598194, 0.411677<, 80.856736, 0.864341<, 80.807134, 0.0230063<,
80.878315, 0.454539<, 80.874411, 0.0559939<, 80.32683, 0.456437<,
80.781892, 0.647471<, 80.975297, 0.293457<, 80.453405, 0.246344<,
80.452779, 0.784384<, 80.500323, 0.796357<, 80.218455, 0.890308<,
80.128262, 0.63954<, 80.927231, 0.22219<, 80.287996, 0.846428<,
80.823864, 0.134597<, 80.773817, 0.869142<, 80.264906, 0.357928<<
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Graphics@Line@RandomReal@80, 1<, 824, 2<DDD

Graphics@8Hue@.77D, Rectangle@80, 0<, 85, 1<D, Hue@.17D, Rectangle@83, 0<, 84, 2<D<D
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Graphics3D@8Cuboid@80, 0, 0<D, Cuboid@80, 0, 1<D, Cuboid@80, 1, 1<D, Cuboid@81, 1, 1<D<D

GraphicsB:Circle@80, 0<, 1D, Circle@80, 0<, 82, 1<D, CircleB:
3

2
, -

1

4
>,

5

4
, :

1

2
, 2>F>,

AspectRatio -> Automatic, Axes -> AutomaticF

-2 -1 1 2
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1.0

14 3. Graphics.nb



InscribedCircleData@pA : 8_, _<, pB : 8_, _<, pC : 8_, _<D :=

ModuleB8AB, BC, AC, a, b, c, s, pP, pQ, AP, BQ, p, q, ps, qs, pqs, incenter, inradius<,

AB = pB - pA; BC = pC - pB; AC = pC - pA; a = BC.BC ; b = AC.AC ; c = AB.AB ;

AP = pB + p BC - pA; BQ = pA + q AC - pB; ps = SolveB
AP.AB

c
==

AP.AC

b
, pF@@1, 1DD;

qs = SolveB
BQ.BC

a
==

BQ.H-ABL

c
, qF@@1, 1DD; pP = pB + p BC �.ps;

pQ = pA + q AC �.qs; pqs = Solve@pA + p HpP - pAL == pB + q HpQ - pBL, 8p, q<D@@1DD;

incenter = pA + p HpP - pAL �.pqs; s =
1

2
Ha + b + cL;

inradius =
Hs - aL Hs - bL Hs - cL

s
; 8incenter, inradius<F

InscribedCircle@pA : 8_, _<, pB : 8_, _<, pC : 8_, _<D := Graphics@
8Line@8pA, pB, pC, pA<D, Circle@Sequence �� InscribedCircleData@pA, pB, pCDD<,
AspectRatio -> Automatic, PlotRange -> All, Frame -> TrueD

InscribedCircle@81.8, 6.8<, 83.1, 1.1<, 86.4, 2.4<D

2 3 4 5 6

2

3

4

5

6
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Graphics@88RGBColor@0, 0, 1D, Disk@80, 0<, 82, 1<D<,
8RGBColor@0, 1, 1D, Disk@80, 0<, 1D<, 8RGBColor@1, 1, 0D, Disk@80, 0<, 2, 80, 1<D<<,

AspectRatio ® Automatic, Axes ® AutomaticD

-2 -1 1 2

-1.0

-0.5

0.5

1.0

1.5

Graphics@8Text@"Left", 8-1, 0<, 8-1, 0<D, Text@"Right", 81, 0<, 81, 0<D,
Text@"Above", 80, 1<, 80, -1<D, Text@"Below", 80, -1<, 80, 1<D,
8PointSize@.075D, RGBColor@1, 0, 0D, Point@80, 0<D<<, PlotRange ® AllD

Left Right

Above

Below
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ListPlot@Table@8x, EulerPhi@xD<, 8x, 15<D, PlotStyle ® PointSize@0.02DD

2 4 6 8 10 12 14

2

4

6

8

10

12

Graphics@8Dashing@80.15, 0.05<D, Circle@80, 0<, 1D<, AspectRatio ® AutomaticD

PlayASinA2tE, 8t, 11, 14<E

3 s È 8000 Hz
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Animate[Plot[Sin[n x], {x, 0, 2 Pi}, Axes -> False], {n, 1, 3, 1}]

n

g = ParametricPlot3D[
 {x, Cos[t] Sin[x] , Sin[t] Sin[x]},
      {x, -Pi, Pi}, {t, 0, 2Pi},
      Axes -> False, Boxed -> False]

Quit@D
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Graphics[{Arrow[{{0, 0},{1, 1}}],
    Hue[0], Arrow[{{.75, .25},{.25, .75}}]}]

Plot[Sin[x], {x, 0, 2Pi},
    Epilog -> {Arrow[{{4, .25}, {Pi/2, 1}}],
     Text["Here", {4, .15}, {0, -1}]}
]

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

Here
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ContourPlot[x^2 + 2 y^2 == 3, {x, -2, 2},{y,-2,2}]

-2 -1 0 1 2

-2

-1

0

1

2

ContourPlot[{(x^2 + y^2)^2 == (x^2 - y^2),
 (x^2 + y^2)^2 == 2 x y}, {x,-2,2},{y,-2,2}
]

-2 -1 0 1 2

-2

-1

0

1

2
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RegionPlotA 1 £ Hx + 2 yL2
+ 4 y2 £ 4, 8x, -3, 3<, 8y, -3, 3< E

-3 -2 -1 0 1 2 3

-3
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-1

0

1

2

3

RegionPlot3DA x2 + y2 + z2 £ 1 ì 3 x2 + 3 y2 £ z2, 8x, -1, 1<, 8y, -1, 1<, 8z, -1, 1<E
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VectorPlot@8Sin@xD, Cos@yD<, 8x, 0, Pi<, 8y, 0, Pi<D

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0
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1.5
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RevolutionPlot3D[
          Sin[x], {x, 0, 2 Pi}]
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1.0
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RevolutionPlot3D[{1.1 Sin[u], u^2},
  {u, 0, 3 Pi/2}, BoxRatios -> {1, 1, 2}]
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RevolutionPlot3D[x^2, {x, 0, 1},
    RevolutionAxis -> {1, 1, 1}]
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1.0
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FinancialData@"GE", "Price"D

20.595

DateListLogPlot@FinancialData@"^DJI", AllD, Joined ® True, Filling ® BottomD

1940 1960 1980 2000

100

200

500

1000

2000

5000

1 ´ 104

Plot@Table@BesselJ@n, xD, 8n, 4<D, 8x, 0, 15<, Filling ® Axis, Evaluated -> TrueD

2 4 6 8 10 12 14

-0.2

0.2

0.4

0.6
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ContourPlot@Sin@3 xD Cos@x + yD, 8x, 0, 3<, 8y, 0, 3<,
ContourLabels ® Automatic, ColorFunction ® "Pastel"D

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ParametricPlot3D@8Cos@vD + 0.3 Sin@3 uD + 0.04 Sin@20 vD, u,
Sin@vD + 0.3 Cos@3 uD + 0.04 Sin@20 vD<, 8u, -Π, Π<, 8v, -Π, Π<, PlotPoints ® 100,

PlotStyle ® 8Orange, Specularity@White, 10D<, Axes ® None, Mesh ® NoneD

One can innsert a plot into a disk:
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Graphics@8LightGray, Disk@D, Inset@Plot@Tan@xD, 8x, -3, 3<DD<D

-3 -2 -1 1 2 3

-6

-4

-2

2

4

6

One can insert an expression in a graphic: 

Graphics@8Circle@D, Inset@X^2 + Y^2 � 1, 80, 0<D<D

X2
+ Y2

� 1

solution2 = NDSolve@8x''@tD + x@tD^3 � Sin@tD, x@0D � x'@0D � 0<, x, 8t, 0, 50<D

88x ® InterpolatingFunction@880., 50.<<, <>D<<
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ParametricPlot@8x@tD, x'@tD< �. solution2, 8t, 0, 50<D

-2 -1 1

-2

-1

1

2

Block@8f = Cos@x + I yD<,
ParametricPlot@Evaluate@8Re@fD, Im@fD<D, 8x, -Pi, Pi<, 8y, -2, 2<DD

-3 -2 -1 0 1 2 3
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0

1

2

3
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4. Dynamic Interactivity
Mathematica has several  dynamic elements. It is very useful for visualization of the results if the prob-
lem contains  some parameters and one wants  to  study it  under  the change of  those parameters.  You
can study the following examples.

Example 1.

Manipulate@Show@Graphics3D@Point@8-1, 1 � 2, 1<D, ViewPoint ® 8a, 1, 1<DD, 8a, -1, 1<D

a

Example 2.

b

b

Dynamic@bD

0.



Slider@Dynamic@bDD

Show@Graphics3D@Point@81, 1 � 2, 1<D, ViewPoint ® 8Dynamic@bD, 1, 1<DD

Other examples.

Dynamic@nD

0.

Slider@Dynamic@nDD
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Dynamic@Plot@Sin@Hn + 1L xD, 8x, 0, 6<DD

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

DynamicModule@8x<, 8Slider@Dynamic@xD, 81, 5<D, Dynamic@Plot@Sin@x iD, 8i, 0, 2 Pi<DD<D

: ,
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

>

8Slider2D@Dynamic@xDD, Dynamic@xD<

: , 0.>

8InputField@Dynamic@xDD, Dynamic@xD<

: 0.` , 0.`>

: 0. , 0.>

8Slider@Dynamic@1 - y, Hy = 1 - ðL &DD, Dynamic@yD<

: , y>

8Slider@Dynamic@xDD, Slider@Dynamic@1 - x, Hx = 1 - ðL &DD<

: , >
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Clear@x, nD

Manipulate@Factor@x^n - 1D, 8n, 10, 100, 1<D

n

-1.

Clear@a, b, c, x, yD

Manipulate@Plot@Sin@a x + bD, 8x, 0, 6<D,
88a, 2, "Multiplier"<, 1, 4<, 88b, 0, "Phase Parameter"<, 0, 10<D

Multiplier

Phase Parameter

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

Grid@88a, b, c<, 8x, y, z<<D

a b c
x y z

Grid@88a, b, c<, 8x, y^2, z^3<<, Frame ® AllD

a b c

x y2 z3
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DynamicModule@8Θ = 0<, Grid@88Slider@Dynamic@ΘD, 80, 100<D,
Dynamic�PolarPlot@t, 8t, -Pi, Θ<, ImageSize ® TinyD<<DD

-40 -20 20 40

-40

-20

20

40

Manipulate@PolarPlot@Θ, 8Θ, 0, t<, PlotRange ® 20D, 8t, 1, 6 Pi<D

t

-20 -10 10 20

-20

-10

10

20

DynamicModule@8col = Green<, EventHandler@
Style@"text", FontColor ® Dynamic@colDD, 8"MouseClicked" ¦ Hcol = RedL<DD

text

DynamicModule@8col = Green<, EventHandler@Style@"text", FontColor ® Dynamic@colDD,
8"MouseClicked" ¦ Hcol = col �. 8Red ® Green, Green ® Red<L<DD

text

interpolationCurve@p_, n_D :=

Module@8x, f = Interpolation@p, InterpolationOrder ® n D<,
First�Plot@Evaluate�f@xD, 8x, Min@p@@All, 1DDD, Max@p@@All, 1DDD<DD;
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DynamicModule@8n = 2, p = 8<, c = 8<<,
EventHandler@Dynamic�Graphics@8Point@pD, c<, PlotRange ® 1, Frame ® TrueD,

"MouseDown" :>

Hp = Union@Sort�Append@p, MousePosition@"Graphics"DD,
SameTest ® HFirst@ð1D � First@ð2D &LD;

If@Length@pD ³ n + 1, c = interpolationCurve@p, nDDLDD

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

Graphics@Locator@80, 0<D, PlotRange ® 2D
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DynamicModule@8p = 80.5, 0.5<<,
8Graphics@Locator@Dynamic@pDD, PlotRange ® 2D, Dynamic@pD<D

: , 8-0.388889, 0.7<>

Manipulate@Graphics@Line@880, 0<, p<D, PlotRange ® 2D, 88p, 81, 1<<, Locator<D

� Manipulate options

Quit@D
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Manipulate@Plot@If@t, Sin@xD, Cos@xDD, 8x, 0, 10<D, 8t, 8True, False<<D

t

2 4 6 8 10

-1.0

-0.5

0.5

1.0

Manipulate@Plot@f@xD, 8x, 0, 2 Pi<D, 8f, 8Sin, Cos, Tan, Cot<<D

f Sin Cos Tan Cot
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Manipulate@Plot@f@xD, 8x, 0, 2 Pi<D,
8f, 8Sin ® "sine", Cos ® "cosine", Tan ® "tangent"<<D

f sine cosine tangent

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

Manipulate@Graphics@Line@880, 0<, p<D, PlotRange ® 2D, 88p, 81, 1<<, Locator<D
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Manipulate@Graphics@Polygon@ptD, PlotRange ® 2D,
88pt, 880, 0<, 81, 0<, 81, 1<, 80, 1<, 81, -1<<<, Locator<D
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Manipulate@ParametricPlot@8Sin@t + d@@1DDD, Sin@t + d@@2DDD<, 8t, 0, 2 Pi<D,
8d, 80, 0<, 8Pi, Pi<<D

d

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Manipulate@Plot@f@xD, 8x, 0, 10<D, 8f, Tan<D
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f Sin

2 4 6 8 10
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f Sin
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Manipulate@Graphics@8color, Disk@D<D, 8color, Purple<D

color

Manipulate@8x1, x2, x3<, 8x1, 0, 1<, 8x2, 81, 2, 3<<, 8x3, 8True, False<<D

x1

x2 1 2 3

x3

80.612, 1, False<
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8Manipulate@Plot@f@xD, 8x, 0, 2 Pi<D, 8f, 8Sin, Cos, Tan, Cot<<D, Manipulate@
Plot@f@xD, 8x, 0, 2 Pi<D, 8f, 8Sin, Cos, Tan, Cot<, ControlType ® PopupMenu<D<

:

f Sin Cos Tan Cot

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

,

f Sin

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

>

Manipulate@x, 88x, 0<, Button@"random", x = RandomReal@DD &<D

x random

0
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Manipulate@x, 88x, 1<, 0, 5<, 8x, Range@5D<D

x

x 1 2 3 4 5

1

Manipulate@Block@8f = F@x + I yD<, ParametricPlot@
Evaluate@8Re@fD, Im@fD<D, 8x, -Pi, Pi<, 8y, -2, 2<DD, 8F, 8Sin, Tan, Cot<<D

F Sin Tan Cot

Quit@D
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Manipulate@Plot3D@Sin@n x yD, 8x, 0, 3<, 8y, 0, 3<D, 8n, 1, 4, 0.5<D

n
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Manipulate@ParametricPlot3D@
8Cos@vD + 0.3 Sin@n uD + 0.04 Sin@20 vD, u, Sin@vD + 0.3 Cos@m uD + 0.04 Sin@20 vD<,
8u, -Π, Π<, 8v, -Π, Π<, PlotPoints ® 50, Mesh ® mesh, Axes ® axes, Boxed ® boxedD,

8n, 1, 5<, 8m, 1, 5<,
8mesh, 8None, Automatic, All<<,
8axes, 8False, True<<,
8boxed, 8False, True<<D

n

m

mesh None Automatic All

axes

boxed

Quit@D
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Manipulate@Module@8x<, With@
8sol = NDSolve@8x''@tD + x@tD^3 � Α Sin@Ω t + ΒD, x@0D � pt@@1DD, x'@0D � pt@@2DD<, x,

8t, 0, 50<D<, ParametricPlot@8x@tD, x'@tD< �. sol, 8t, 0, t1<, PlotRange ® 5DDD,
8Α, -3, 3<, 8Β, -Π, Π<, 8Ω, 1, 5<, 8t1, 10, 50<, 88pt, 80, 0<<, Locator<,
SaveDefinitions ® TrueD

Α

Β

Ω

t1

-4 -2 2 4

-4

-2

2

4
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ManipulateB

PlotBEvaluateBSumB
1

Hk + 1Li
, 8k, 0, n<FF, 8n, 0, 100<, PlotRange ® AllF, 8i, 1, 10, 1<F

i

20 40 60 80 100

0.5

1.0

1.5

2.0

Manipulate@PolyhedronData@polyD, 8poly, PolyhedronData@D<D

poly 8Antiprism, 4<
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ManipulateBWithB

:img = ImageAdjustB , 8contrast, brightness<F>,

Column@8ImageHistogram@imgD, Image@img, ImageSize ® AllD<DF,

88brightness, 0<, -1, 1<, 88contrast, 0<, -1, 1<F

brightness

contrast
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5.More Advanced Topics.

Some Other topics

� Dynamic Programming

Recursive programs are programs that "refer to themselves". Such programs can be very slow because
they use a lot of "stack memory".  One way to speed them up is by means of "dynamic programming" or
"functions  that  remember  their  values".   The  best  way  to  understand  this  method  is  by  means  of  an
example.

ã Fast Fibonacci numbers.

a@nD �. RSolve@8a@nD � a@n - 1D + a@n - 2D, a@0D � 0, a@1D � 1<, a@nD, nD@@1DD

Fn

FunctionExpand@Fibonacci@nDD

1

5

1

2
K1 + 5 O

n

-
2

1 + 5

n

cosHΠ nL

Let's compare the following two definitions of the Fibonacci numbers. First we start  with a usual recur-
sive definition.

Fib1@0D = 0; Fib1@1D = 1;

Fib1@n_D := Fib1@n - 1D + Fib1@n - 2D

Timing@Fib1@30DD

82.26725, 832 040<

This is very slow and already the 30th Fibonacci number takes a noticeable time to compute. Next, we
try "dynamic programing". The definition looks a little strange; note the use of := and = .

Clear@Fib2D

Fib2@0D = 0; Fib2@1D = 1;



Fib2@n_D := Fib2@nD = Fib2@n - 1D + Fib2@n - 2D

Timing@Fib2@30DD

80.000267, 832 040<

Computing even the 50th Fibonacci number takes virtually no time. 

We can see the difference between the two definitions by using the function Trace:

Trace@Fib1@5DD

8Fib1@5D, Fib1@5 - 1D + Fib1@5 - 2D, 885 - 1, 4<, Fib1@4D,
Fib1@4 - 1D + Fib1@4 - 2D, 884 - 1, 3<, Fib1@3D, Fib1@3 - 1D + Fib1@3 - 2D,

883 - 1, 2<, Fib1@2D, Fib1@2 - 1D + Fib1@2 - 2D, 882 - 1, 1<, Fib1@1D, 1<,
882 - 2, 0<, Fib1@0D, 0<, 1 + 0, 1<, 883 - 2, 1<, Fib1@1D, 1<, 1 + 1, 2<,

884 - 2, 2<, Fib1@2D, Fib1@2 - 1D + Fib1@2 - 2D, 882 - 1, 1<, Fib1@1D, 1<,
882 - 2, 0<, Fib1@0D, 0<, 1 + 0, 1<, 2 + 1, 3<,

885 - 2, 3<, Fib1@3D, Fib1@3 - 1D + Fib1@3 - 2D,
883 - 1, 2<, Fib1@2D, Fib1@2 - 1D + Fib1@2 - 2D, 882 - 1, 1<, Fib1@1D, 1<,

882 - 2, 0<, Fib1@0D, 0<, 1 + 0, 1<, 883 - 2, 1<, Fib1@1D, 1<, 1 + 1, 2<, 3 + 2, 5<

Trace@Fib2@5DD

8Fib2@5D, Fib2@5D = Fib2@5 - 1D + Fib2@5 - 2D,
8885 - 1, 4<, Fib2@4D, Fib2@4D = Fib2@4 - 1D + Fib2@4 - 2D,

8884 - 1, 3<, Fib2@3D, Fib2@3D = Fib2@3 - 1D + Fib2@3 - 2D,
8883 - 1, 2<, Fib2@2D, Fib2@2D = Fib2@2 - 1D + Fib2@2 - 2D,

8882 - 1, 1<, Fib2@1D, 1<, 882 - 2, 0<, Fib2@0D, 0<, 1 + 0, 1<, Fib2@2D = 1, 1<,
883 - 2, 1<, Fib2@1D, 1<, 1 + 1, 2<, Fib2@3D = 2, 2<,

884 - 2, 2<, Fib2@2D, 1<, 2 + 1, 3<, Fib2@4D = 3, 3<,
885 - 2, 3<, Fib2@3D, 2<, 3 + 2, 5<, Fib2@5D = 5, 5<

The  first  function  repeatedly  performs  the  same  computation  (see  Fib1[3]  and  Fib2[3]  in  the  output  of
Trace above).

We can also check what Mathematica knows about the functions Fib1 and Fib2

?Fib1

Global`Fib1

Fib1@0D = 0

Fib1@1D = 1

Fib1@n_D := Fib1@n - 1D + Fib1@n - 2D

DownValues@Fib1D

8HoldPattern@Fib1@0DD ¦ 0, HoldPattern@Fib1@1DD ¦ 1,
HoldPattern@Fib1@n_DD ¦ Fib1@n - 1D + Fib1@n - 2D<

?Fib2
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Global`Fib2

Fib2@0D = 0

Fib2@1D = 1

Fib2@2D = 1

Fib2@3D = 2

Fib2@4D = 3

Fib2@5D = 5

Fib2@n_D := Fib2@nD = Fib2@n - 1D + Fib2@n - 2D

The  point  is  that  the  last  definition  makes  Fib2  remember  each  value  that  it  has  once  computed  so  it
never  has  to  compute  it  again.  The  result  is  much  better  performance  at  the  cost  of  some  memory
consumption, of course. This can be recovered by using

Clear@Fib2D

Fibonacci@30D �� Timing

80.000012, 832 040<

e1 =
1

2
J 5 + 1N;

e2 =
1

2
J1 - 5 N;

b1 =
1

10
J 5 + 5N;

b2 =
1

10
J5 - 5 N;

Fib3Hn_L := ExpandAb1 e1n-1
+ b2 e2n-1E

Fib3@30D

832 040

Imperative (Procedural) and Functional programming

So far we have considered two programming styles that one can use in Mathematica  -  rule based and
functional.  There is also another style,  called procedural or imperative.  This is the style used by most
traditional  programming  languages,  such  as  C.   The  characteristic  of  this  style  is  the  use  of  explicit
assignments  to  variables,  and  of  loops  that  change  the  state  of  a  variable.  Here  is  an  example  of  a
procedural program which changes the state of a variable x by using assignments:

Clear@xD
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x = 1; x = x + 1; x = x + 1; x = x + 1; x = x + 1; x = x + 1; x = x + 1;

x

7

This can be also written as 

FullForm@Hold@x = 1; x = x + 1; x = x + 1; x = x + 1; x = x + 1; x = x + 1; x = x + 1;DD

Hold@CompoundExpression@Set@x, 1D, Set@x, Plus@x, 1DD, Set@x, Plus@x, 1DD,
Set@x, Plus@x, 1DD, Set@x, Plus@x, 1DD, Set@x, Plus@x, 1DD, Set@x, Plus@x, 1DD, NullDD

Note that Mathematica automatically returns the value of the last argument of ComposedExpression. In
most  procedural  languages  no  final  value  would  be  returned  and  you  need  an  explicit  Return  or  Print
statement  Return[x]  or  Print[x]  at  the  end.  In  Mathematica  you  never  need  these  statements  for  this
purpose. 
Below  is   another  way  to  do  the  same  thing,  using  a  Do  loop.  Note  that  the  Do  loop  does  not  return
anything, so we need x at the end if we wish to return the value of x. 

Clear@xD

x = 1; Do@x = x + 1, 86<D; x

7

x

7

x = 1; Do@x++, 86<D; x

7

Mathematica has other procedural loops: While and For. They should be used sparingly, particularly the
last one which is very inefficient. In general you can get much better performance from Mathematica by
using functional constructions: Nest, Fold and FixedPoint and in version 6, Accumulate.

� Local Variables

Because in imperative programs assignments are used, one has to be careful not to accidentally use or
redefine variables to which values may have been assigned earlier. The best way to protect oneself from
this  possibility  is  by  means of  local  variables.  Mathematica  has three basic  constructions for  localizing
variables: Block, Module and With.

?Block

Block@8x, y, … <, exprD specifies that expr is to be evaluated with local values for the symbols x, y, … .

Block@8x = x0, … <, exprD defines initial local values for x, … .  �
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x = 3; Block@8x<, x = 1D

1

x

3

Although inside Block we set the value of x  to 1, outside it remained equal to 3. The same will happen if
we use Module

?Module

Module@8x, y, … <, exprD specifies that occurrences of the symbols x, y, … in expr should be treated as local.

Module@8x = x0, … <, exprD defines initial values for x, … .  �

x = 3;

Module@8x, y, z = 1<, x = 5; y = x + zD

6

x

3

Block and Module work in a quite different way. When you localize a variable in Block its  value is first
stored, then erased, than after Block is exited the old (stored) value is restored. In the case of Module
the variables are renamed so that their names do not conflict with any other names. Another construc-
tion that  localizes variables is  With.  Note that,  unlike in  Module and Block,    all  local  variables in  With
must be initialized so you can't use assignments to local variables in With. 

ClearAll@ f D

f @x_ListD := Module@8u = Length@xD, v<, v = u + 1D

f @81, 2, 3<D

4

g@x_ListD := Module@8u = Length@xD, v = u + 1<, vD

g@81, 2, 3<D

u + 1

ClearAll@gD
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g@x_ListD := With@8u = Length@xD, v = u + 1<, vD

g@81, 2, 3<D

1 + u

h@x_ListD := Module@8u = Length@xD, v = u + 1<, vD

h@81, 2, 3<D

1 + u

g@x_ListD := Block@8u = Length@xD, v = u + 1<, vD

g@81, 2, 3<D

4

Another important example:

foo := x

x = 1; foo

1

Block@8x = 2<, fooD

2

Although foo was definied outside Block, its value inside Block is changed. This does not happen when
we use Module:

foo

1

Module@8x = 2<, fooD

1

Thus,  Module  depends  only  on  the  original  definition,  Block  on  the  evaluation.  (Lexical  scoping  vs
dynamic scoping). 

� Loops and Functional Iteration

 Programs written  in  this  style  change the  values of  some variable.  In  order  to  get  the  changed value
one has to explicitly evaluate the variable. Here is a simple procedural program which uses the Do loop.
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 Programs written  in  this  style  change the  values of  some variable.  In  order  to  get  the  changed value
one has to explicitly evaluate the variable. Here is a simple procedural program which uses the Do loop.

?Do

Do@expr, 8imax<D evaluates expr imax times.

Do@expr, 8i, imax<D evaluates expr with the

variable i successively taking on the values 1 through imax Hin steps of 1L.

Do@expr, 8i, imin, imax<D starts with i = imin.

Do@expr, 8i, imin, imax, di<D uses steps di.
Do@expr, 8i, 8i1, i2, … <<D uses the successive values i1, i2, … .

Do@expr, 8i, imin, imax<, 8 j, jmin, jmax<, … D evaluates expr looping over different values of j, etc. for each i.  �

Timing@x = 1; Do@x++, 820 000<D; xD

80.011248, 20001<

We can do the same thing by using the functional style.  When programming in this style we use func-
tions which return values rather then change states of variables. Instead of loops we use "higher func-
tions", that is functions whose arguments are functions. One of such functions is Nest.

?Nest

Nest@ f , expr, nD gives an expression with f applied n times to expr.  �

Nest@ f , a, 4D

f@f@f@f@aDDDD

There is also a related function NestList

?NestList

NestList@ f , expr, nD gives a list of the results of applying f to expr 0 through n times.  �

NestList@ f , a, 4D

8a, f@aD, f@f@aDD, f@f@f@aDDD, f@f@f@f@aDDDD<

Instead  of  using  the  Do  loop  above  we  can  obtain  the  same  result  using  the  functional  approach  as
follows:

Nest@ð + 1 &, 1, 20 000D �� Timing

80.000682, 20001<

The program runs much faster. 
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FoldList@ f , a, 8b, c, d, e<D

8a, f@a, bD, f@f@a, bD, cD, f@f@f@a, bD, cD, dD, f@f@f@f@a, bD, cD, dD, eD<

Here f has to be a function of two arguments. Here is an example which shows the working of FoldList:

FoldList@Plus, 0, 8a, b, c, d<D

80, a, a + b, a + b + c, a + b + c + d<

FoldList@Times, 1, 8a, b, c, d<D

81, a, a b, a b c, a b c d<

Finally there is one new and very useful function that appeared in Mathematica 6.

?Accumulate

Accumulate@listD gives a list of the successive accumulated totals of elements in list.  �

Accumulate@8a, b, c, d, e<D

8a, a + b, a + b + c, a + b + c + d, a + b + c + d + e<

The  same  result  can  be  achieved  using  FoldList,  however,  Accumulate,  being  a  more  specialised
function, is considerably faster. 

FoldList@Plus, 0, 8a, b, c, d, e<D

80, a, a + b, a + b + c, a + b + c + d, a + b + c + d + e<

ls = RandomInteger@81, 100<, 81000<D;

a = HAccumulate@lsD; �� TimingL

80.00005, Null<

b = HRest@FoldList@Plus, 0, lsDD; �� TimingL

80.000465, Null<

First@bD �First@aD

9.3
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Last@aD � Last@bD

True

This much greater speed of a more specialized function compared with a more general one is typical of
Mathematica programming.

http:��reference.wolfram.com�mathematica�tutorial�

ApplyingFunctionsRepeatedly.html

� Block and global variables.

One  of  the  most  common  uses  of  Block  is  to  change  temporarily  the  value  of  a  global  variable.  For
example, the global variable $RecursionLimit has by defaul the value: 

$RecursionLimit

256

The  reason  for  this  is  to  stop  accidental  infinte  recurssion  from  occuring  as  a  result  of  programming
errors. However, this can sometimes be inconvenient. Here is a familiar example.

Clear@FibD

Fib@1D = 1; Fib@2D = 1; Fib@n_D := Fib@nD = Fib@n - 1D + Fib@n - 2D;

Fib@3000D

$RecursionLimit::reclim : Recursion depth of 256 exceeded. �

The value of 256 for $RecursionLimit prevents the code from working. Using Block we can temporarily
change this value:

Clear@FibD

Fib@1D = 1; Fib@2D = 1; Fib@n_D := Fib@nD = Fib@n - 1D + Fib@n - 2D;

Block@8$RecursionLimit = 10 000<, Fib@3000DD

410615886307971260333568378719267105220125108637369252408885430926905584274�

113403731330491660850044560830036835706942274588569362145476502674373045�

446852160486606292497360503469773453733196887405847255290082049086907512�

622059054542195889758031109222670849274793859539133318371244795543147611�

073276240066737934085191731810993201706776838934766764778739502174470268�

627820918553842225858306408301661862900358266857238210235802504351951472�

997919676524004784236376453347268364152648346245840573214241419937917242�

918602639810097866942392015404620153818671425739835074851396421139982713�

640679581178458198658692285968043243656709796000
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However, note that the global value of $RecursionLimit remains unchanged:

$RecursionLimit

256

Example 1: Simulating Brownian Motion

ã One Path

BrownianMotion@n_D := Accumulate@Prepend@RandomReal@NormalDistribution@0, Sqrt@1 �nDD, 8n<D, 0DD

slower alternative

BrownianMotion@n_D :=

FoldList@Plus, 0, RandomReal@NormalDistribution@0, Sqrt@1 � nDD, 8n<DD

and even slower

BrownianMotion@n_D :=

NestList@ð + RandomReal@NormalDistribution@0, Sqrt@1 � nDDD &, 0, nD

ListLinePlot@BrownianMotion@2000DD

500 1000 1500 2000

-0.6

-0.4

-0.2

0.2
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ListLinePlot@BrownianMotion@2000D, DataRange ® 80, 1<D

0.2 0.4 0.6 0.8 1.0

-1.0

-0.8

-0.6

-0.4

-0.2

0.2

0.4

ã Many Paths

Clear@BrownianMotionD

BrownianMotion@time_, steps_, paths_D := Transpose@Accumulate@Join@8ConstantArray@0, pathsD<,
Transpose@RandomReal@NormalDistribution@0, Sqrt@time �stepsDD, 8paths, steps<DDDDD

ListLinePlot@BrownianMotion@1, 100, 10D, DataRange ® 80, 1<, PlotRange ® AllD

0.2 0.4 0.6 0.8 1.0

-1.5

-1.0

-0.5

0.5

1.0
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Manipulate@ListLinePlot@BrownianMotion@time, steps, pathsD, DataRange ® 80, time<, PlotRange ® AllD,
88steps, 100, "number of steps"<, 10, 300, 1<, 88paths, 10, "number of paths"<, 1, 50, 1<,
88time, 1, "time"<, 0.5, 10<, SaveDefintions ® TrueD

number of steps

number of paths

time

0.5 1.0 1.5 2.0 2.5

-4

-3

-2

-1

1

2

ListLinePlot::lpn : BrownianMotion@2.56, 156, 15D is not a list of numbers or pairs of numbers. �
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Manipulate@
BlockRandom@ListLinePlot@BrownianMotion@time, steps, pathsD, DataRange ® 80, time<, PlotRange ® 8-2, 2<DD,
88steps, 100, "number of steps"<, 10, 300, 1<, 88paths, 10, "number of paths"<, 1, 50, 1<,
88time, 1, "time"<, 0.5, 10<, SaveDefitition ® True, Initialization ¦

HBrownianMotion@time_, steps_, paths_D := Transpose@Accumulate@Join@8ConstantArray@0, pathsD<,
RandomReal@NormalDistribution@0, Sqrt@time �stepsDD, 8steps, paths<DDDDLD

number of steps

number of paths

time

0.2 0.4 0.6 0.8 1.0

-2

-1

1

2
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Manipulate@BlockRandom@SeedRandom@rD;
ListLinePlot@BrownianMotion@time, steps, pathsD, DataRange ® 80, time<, PlotRange ® 8-2, 2<DD,

88steps, 100, "number of steps"<, 10, 300, 1<, 88paths, 10, "number of paths"<, 1, 50, 1<,
88time, 1, "time"<, 0.5, 10<, 88r, 0, ""<, Button@"randomize", r = RandomInteger@2^64 - 1DD &<,
SaveDefitition ® True, Initialization ¦

HBrownianMotion@time_, steps_, paths_D := Transpose@Accumulate@Join@8ConstantArray@0, pathsD<,
RandomReal@NormalDistribution@0, Sqrt@time �stepsDD, 8steps, paths<DDDDLD

number of steps

number of paths

time

randomize

0.5 1.0 1.5

-2

-1

1

2
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 A few words about Dynamic and Manipulate

In version 6 of  Mathematica, new features appeared which made it  possible to use the Front End in a
new  way.   The  main  idea  is  that  expressions  with  head  Dynamic  are  updated  when  their  “displayed
form” changes. The simplest case is:

� Dynamic

Dynamic@xD

0.

x = 5

5
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DateString@D

Wed 16 Nov 2011 14:29:47

Dynamic@Refresh@DateString@D, UpdateInterval ® InfinityDD

Wed 4 Jan 2012 13:06:21

8Slider@Dynamic@xD, Appearance ® "Labeled"D, Dynamic@x^2D<

: 0. , 0.>

Slider@Dynamic@xDD

DynamicModule@8x<, 8Dynamic@x^2D, Slider@Dynamic@xD, Appearance ® "Labeled"D<D

:0.190969, 0.437 >

DynamicModule@8x<,
8Dynamic@x^2D, Slider@Dynamic@xD, 80, 10, 1<, Appearance ® "Labeled"D<D

:64, 8 >

DynamicModule@8x<, 8Dynamic@x^2D, PopupMenu@Dynamic@xD, Range@10DD<D

:16, 4 >

DynamicModule@8x<, 8Dynamic@x^2D, SetterBar@Dynamic@xD, Range@10DD<D

:25, 1 2 3 4 5 6 7 8 9 10 >

DynamicModule@8x = 1<,
8Dynamic@xD, Dynamic@Slider@x, 80, 1<, Appearance ® "Labeled"DD<D

:1, 1 >

DynamicModule@8x = 1<,
8Dynamic@xD, Slider@Dynamic@xD, 80, 1<, Appearance ® "Labeled"D<D

:0.817, 0.817 >
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DynamicModule@8n = 1<, Row@8Dynamic@Plot@x^n, 8x, -1, 1<, PlotRange ® AllDD,
Slider@Dynamic@nD, 80, 5, 1<, Appearance ® "Labeled"D<DD

-1.0 -0.5 0.5 1.0

-1.0
-0.5

0.5
1.0

3

�

Manipulate

Manipulate@x^2, 8x, 1, 10, 1, SetterBar<D

x 1 2 3 4 5 6 7 8 9 10

49

Manipulate@ð^2 &�expr, 88expr, 0, "expression"<, 0, 1, 0.1<D

expression

1.

Manipulate@ð^2 &@exprD, 8expr, Table@i, 8i, 0, 1, 0.1<D<D

expr 0.

0.

Manipulate@ð^2 &�expr, 88expr, 0, "expression"<, 0, 1, 0.1, Appearance ® "Labeled"<D

expression 0.5

0.25
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Manipulate@ð^2 &@exprD, 8expr, Table@i, 8i, 0, 1, 0.1<D<D

expr 0.5

0.25

Manipulate@Plot@x^n, 8x, -1, 1<, PlotRange ® AllD,
88n, 0, ""<, 80 ® "zero", 1 ® "one", 2 ® "two", 3 ® "three"<<D

zero one two three

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

5. More Advanced Topics.nb 17



Manipulate@Plot@x^n, 8x, -1, 1<, PlotRange ® AllD,
88n, 0, ""<, Evaluate@Table@i ® ToString@iD, 8i, 0, 10<DD<D

5

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Manipulate@
Graphics@8Pink, Line@ptsD<, PlotRange ® 1.1D,
88pts, 880, 0<, 81, 0<, 80, 1<<<, Locator, LocatorAutoCreate ® True<D
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Manipulate@Plot@Tooltip@xn, "x"^nD, 8x, -1, 1<, PlotRange ® AllD,
88n, 1, ""<, Button@"increase n", n = n + 1D &<D

increase n

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

Manipulate@Plot@Tooltip@xn, "x"^nD, 8x, -1, 1<, PlotRange ® AllD,
88n, 1, ""<, InputField<D

1

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0
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ã Links

http : ��

reference.wolfram.com � mathematica � tutorial � IntroductionToDynamic.html

http:��reference.wolfram.com�mathematica�tutorial�IntroductionToManipulate.
html
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http://reference.wolfram.com/mathematica/tutorial/IntroductionToDynamic.html
http://reference.wolfram.com/mathematica/tutorial/IntroductionToManipulate.html
http://reference.wolfram.com/mathematica/tutorial/IntroductionToManipulate.html

	1-Introduction and a survey
	2-Language Basics
	3-Graphics
	4-Introduction to Dynamic Interactivity
	5-More Advanced Topics

