1. Introduction and Survey

In the 21st century computers are in the process of changing all aspects of our lives. That includes also
mathematics - both the way we do it and even the kind of problems that interest us. The ability to make
computations far beyond anything that was possible without the aid of computers has opened up previ-
ously inaccessible areas of research to anyone equipped with a computer, suitable software and some
mathematical knowledge. This has lead to the creation of sophisticated programs intended for dealing
with all aspects of computational mathematics - symbolic manipulation, numerical computation and
visualization (including interactive one). A leading program of this type is Mathematica produced by
Wolfram Research. Mathematica is, of course, not only a tool of research and exploring new areas of
computational mathematics but also an extremely effective aid in studying traditional ones. The aim of
this essay is to give a brief introduction to some of the possibilities offered by this remarkable program.
For this purpose we have made use of a number of exmaples, some of which are due to the authors of
this text, some have been borrowed from Mathematica’'s official documentation and some from various
sources on the Internet.

Basic information about Mathematica

= The main web-page

The main website for current information, useful projects, plug-ins, learning center
and documentation is www.wolfram.com . At this website one can also find a free CDF-Player, thou-
sands of demonstrations with source files and educational videos.

Mathematica is one of the most powerful and sophisticated systems for symbolic and numerical compu-
tation and visualization. But it is also more than that. Wolfram Research used to describe Mathematica
as a “system for doing mathematics by computer” but it has since changed this to “ the only develop-
ment platform fully integrating computation into complete work-flows”. In other words, Wolfram Research
now conceives Mathematica as essentially a universal tool for almost every purpose - symbolic and
numerical computation and programming being a central aspect (but this is not the whole story). For
example, Mathematica is also an advanced technical typesetting tool, which can produce mathematical
documents of quality comparable to TEX and Latex but in a fully WYSIWYG (What You See is What

You Get) way. At the same time, these documents can contain “live” mathematical formulas and graph-
ics that can be send to another person (a collaborator, a student or a professor) who can use them to
verify the correctness of results or to perform additional computations etc.

In terms of its overall abilities Mathematica currently has no comparable rival (except, perhaps, for suites
of several applications). But if we restrict our attention only to computation, there are other programs
(e.g. Maple, MatLab and others) that can do similar things. As a mathematical tool, Mathematica is a
“general purpose” system. It is very strong in both symbolic and numeric computation. It has very many
powerful specialized functions for subjects as different as polynomial algebra, graph theory, statistics of
financial mathematics. However, in some areas (particularly in pure mathematics) there are specialized
programs (such as MAGMA, Singular, Macaulay2 etc.) which can do some things that Mathematica
cannot do without additional programming or can do them faster (which in certain situations can be
crucial).

The official distributor of Mathematica in Poland is the company Gambit <http://www.mathematica.pl>.

http://www.wolfram.com/
http://demonstrations.wolfram.com/download-cdf-player.html
http://demonstrations.wolfram.com
http://www.mathematica.pl

2 1. Introduction and a survey.cdf

= Wolfram Research sites and projects

Wolfram Research has a number of sites and projects of interest both to Mathematica users and the
general public:

o Mathworld <http://mathworld.wolfram.com/>

Mathworld is a very useful and extensive web resource with definitions, examples and main theorems in
mathematics (and often - Mathematica files in the NB format, i.e., Mathematica notebooks .)

o Wolfram Alpha <http://www.wolframalpha.com/>

Wolfram Alpha - Mathematica (and more) for everyone!

o Wolfram Demonstrations Project <http://demonstrations.wolfram.com>

o Education

Wolfram Research has an extensive educational program. To register for on-line Wolfram Educational

Group (WEG) seminars and classes, one can visit
<http://www.wolfram.com/services/education/calendar.cgi>

The Wolfram Education Group (WEG) offers a wide range of free on-line seminars featuring the latest

version of Mathematica (see http://www.wolfram.com/services/education/seminars/).

There are conferences/master classes/other events in Europe and in particular, in Poland. In Warsaw,
ICM (the interdisciplinary center at UW) has Mathematica and provides some training.

o The Mathematica Journal

The Mathematica Journal <http://www.mathematica-journal.com/> is an on-line journal with research
and educational papers.

= Other Mathematica related sites

There is an excellent and free introduction to Mathematica programming due to Leonid Shifrin:
http://www.mathprogramming-intro.org/

Also the Mathematica Guidebooks <http://www.mathematicaguidebooks.org/index.shtml> provide a
wealth of applications and examples, particularly from physics but also from other areas. Unfortunately
the guidebooks are still not fully compatible with Mathematica 6 and later versions so they are only
suitable for users who are advanced enough to update the relevant parts themselves.

Finally there is an excellent Mathematica discussion group (known as the MathGroup)
http://groups.google.com/group/comp.soft-sys.math.mathematica/topics?pli=1

You can ask any questions about any aspect of Mathematica and get a variety of answers from Mathe-
matica experts, including Wolfram Research employees. Sometimes you can even have your math
problems solved for you.

This is really the best Mathematica centered resource on the Web, if you know how to make use of it.

The above is, of course, not intended to be a exhaustive account of Mathematica related resources on
the Internet. Far from it, the number of both general purpose and specialised sites intended for begin-
ners as well as advanced users is huge and constantly increasing (e.g. blog.wolfram.com, Mathematica
Tips on Twitter etc).

SELECTED EXAMPLES OF WHAT MATHEMATICA CAN DO

http://mathworld.wolfram.com/
http://www.wolframalpha.com/
http://www.demonstrations.wolfram.com
http://www.wolfram.com/services/education/calendar.cgi
http://www.wolfram.com/services/education/seminars/
http://www.mathematica-journal.com/
http://www.mathprogramming-intro.org/
http://www.mathematicaguidebooks.org/index.shtml
http://groups.google.com/group/comp.soft-sys.math.mathematica/topics?pli=1

1. Introduction and a survey.cdf 3

]
= Computational applications

o Built-in functions

A large number of problems (even some “real life” ones) can be solved by simply applying one of
Mathematica’s built-in “functions” (the word “function” in connection with Mathematica is used in a
somewhat different sense than in mathematics, closer to what in other programming languages is called
a “procedure”). Among the most useful of these functions are Solve and Reduce. These are very
general functions that use a large ensemble of advanced algorithms to solve all kinds of equations and
inequalities, many of which would appear unsolvable even to people with good knowledge of mathemat-
ics. We will looks at some remarkable examples of the sort of thing that can be accomplished with
Reduce.

(In version 8 the functions Solve became very enhanced and can solve many of the problems that
Reduce can, but it often uses somewhat different techniques. Probably the main difference between the
two functions is that Reduce always attempts to return the complete solutions of a problem while Solve
will in some situations return a partial solution.)

Perhaps the most basic and frequently performed task in mathematics is solving equations. Reduce can
be used, of course, to solve equations (and systems of equations) far too complicated to solve by hand.
We start by looking at a simple cubic equation, which Mathematica can solve using the famous formula
of del Ferro (often attributed to Tartaglia):

Reduce[x"3-x+1 =0, x, Cubics » True]

1+iV3

2 o 3(9— «/@)

We can also ask Mathematica to compute the real root only:

Reduce[x"3-x+1 =0, x, Reals, Cubics » True]

%(9-«/@)

32/3

We can compute it's numerical value to arbitrary precision:

N[%, 30]

X = —1.32471795724474602596090885448

From the work of Abel and Galois it is known that no solutions of the above kind (in terms of radicals)
can be given for polynomial equations of degree higher than 5. However, this does not stop Mathemat-

1. Introduction and a survey.cdf

ica:

Reduce[x"5-x +1 =0, X]

x=Root[#11° - 11+ 1&, 1] \/ x= Root[#11° - 1 + 1&, 2] \/

x=Root[£#1° - 11+ 1&, 3] \/ x= Root[##1° - 11+ 1&, 4] \/ x=Root[#1° - £#1 + 1&, 5|

Again the values can be computed to arbitrary precision:

N[%, 30]

x = —1.16730397826141868425604589985 \/

x = —0.181232444469875383901800237781 — 1.083954101317710668430344492981 i \/
x = —0.181232444469875383901800237781 + 1.083954101317710668430344492981 i \/
x = 0.764884433600584726029823187709 — 0.352471546031726249317947091403 i \/
x = 0.764884433600584726029823187709 + 0.352471546031726249317947091403 i

Reduce can also deal with purely symbolic problems. For example, consider the quadratic equation
ax?+bx+c=0. Let's obtain the well known condition for it to have two equal roots.

Reduce[EIx,ax2+b x+c=0 Vy,ay2+b y+e=0 X =Y: {a b, C}]

(a=0/\b¢0)\/(a¢0/\c= bz)

4a

Let’'s now try something non-polynomial. Here is a trigpnometric equation. We ask Reduce to solve it for
a range of values in an interval, where there is a finite number of solutions:

Reduce [Cos [X] = Sin[x] &0 <x <2Pi, x] // Full Sinplify

Ax=n7\/4x=5n
We can also obtain a complete solution without a restriction on the domain of solutions.

Reduce [Cos [x] == Si n[x], x] // Full Sinplify

ceZ N\ Bcr—-3)=4x\V8rnci+n=4X)

Here is an equation that seems impossible to solve by hand, but Reduce can do it:

Reduce[Cos[Cos[Xx]] = Sin[Sin[x]] & Abs [x] < 1, X]

x = Root[{cos(cos(tt1)) — sin(sin(H1)) &, 0.7853981633974483096156608458198757210492923498437764552437 —
0.4663385348278305845718632848784660354269560408360176474839 i}] \/

x = Root[{cos(cos(t1)) — sin(sin(H1)) &, 0.7853981633974483096156608458199 +
0.4663385348278305845718632848785 i}]

1. Introduction and a survey.cdf

N[%, 10]

x = 0.7853981634 — 0.4663385348 \/ x = 0.7853981634 + 0.4663385348 i

All the solutions are complex numbers. Reduce can prove that there are no real solutions:

Reduce[Cos[Cos[x]] = Sin[Sin[x]], X, Real s]

False

Here is a completely different kind of equation, this time over the integers.

Reduce[n! +n == 726 &&n > 0, n, I ntegers]

n==6

Let’'s now try something harder - a “real life” problem. There is an Internet forum, called the MathGroup,
where people post questions about Mathematica, including mathematical questions they try to solve with
Mathematica. Solutions are posted by other users including some of the staff of Wolfram Research. One
such question was posted by Ivan Smirnov in January 2011 (the whole thread can be found here:
Smirnov’s problem

Are there any integer solutions of x10 + y10 . 210 _ t 29

It is easy to find trivial solutions where two of the three variables x, y, z are zero, so let’s look for such
solutions. Reduce cannot solve the complete problem but it can quickly verify that there are no solutions

fort < 10%.

Reduce [x"10 +y"10+2710 ==t "2&&0 < X && 0 <y &&X <y &&Yy <z &1 <t < 10"4,
{X, ¥y, z, t}, Integers] // Timng

{1.53308, False}

In fact (after changing certain settings which limit the number of cases Reduce will consider, one can
verify that there are no solutions for 1 <t < 10%°.

Reduce can be very useful in many undergraduate courses. For example, in Analysis 1 one often needs
to prove that a certain integer sequence is monotonic. Consider, for example, the problem

1

Reduce[nl’n > (n+1)n1&n >0, n, Int egers]

neZ/An=3

o Programming

Although many problems can be solved just by applying built-in functions, in many cases there is no
built-in function that will do all the work by itself. In such cases we need to do our own programming.
Here are some recent problems taken from the MathGroup.

http://groups.google.com/group/comp.soft-sys.math.mathematica/browse_thread/thread/991127488329a37a/10767eb57f72d8ee?lnk=gst&q=question+on+diophantine+equations+in+Mathematica#10767eb57f72d8ee
http://groups.google.com/group/comp.soft-sys.math.mathematica/browse_thread/thread/991127488329a37a/10767eb57f72d8ee?lnk=gst&q=question+on+diophantine+equations+in+Mathematica#10767eb57f72d8ee

1. Introduction and a survey.cdf

Find three 2 - digit prime numbers such that :
(i) The average of any two of the three is a prime number, and
(ii) The average of all three is also a prime number

There is no Mathematica function that will automatically answer a question like this, but the answer can
be found with a few lines of Mathematica code:

I sl = Sel ect [Range[11, 99], PrineQ];

| s2 = Tupl es[l s1, {3}];

| s3 = Del et eCases[Union[Sort /el s2], {__ , X_, __ , X, ___}1;
Sel ect [I s3, AndeePri neQ/@e Mean /ePartition[#l, 2, 1, {1, 1}] &]

11 23 71
11 23 83
11 47 71
13 61 73
17 29 89
23 59 83
29 53 89

Here is another question from the MathGroup:

What' s the easiest way to determine the length of the repeating cycle for decimal expansions of frac-
tions? For example, 1/7 == 0.14285714285714285714. . .so the length of its repeating cycle

(142857) is 6. For 1/3 the length of the cycle is obviously 1. For some fractions, e.g., 1/4, the decimal
expansion is not cyclical (in base 10).

We use programming to define a function lengthOfCycle. We make use of several built-in Mathematica
functions, in particular, IntegerExponent and MultiplicativeOrder. If we could not use these functions the
program would have to be much longer, more complicated and less efficient.

| engt hOf Cycl e[x_Rational] : =
Modul e[{n = Denomi nat or [X], &, b}, a =Integer Exponent [n, 2];
b = | nt eger Exponent [n, 5]; MultiplicativeOder [10, n/ (2*a*5"b)]]

| engt hOf Cycl e[l /7]

6

In certain situations programs written in Mathematica programming language can be much slower than
programs written in typed and compiled languages such as C, Java, etc (although, of course, writing
such programs in Mathematica is almost always much quicker). However, for many types of programs
this difference can be greatly reduced by “compiling”. Not every kind of Mathematica program can be
successfully compiled but when it can, this can make a very big difference to performance. Here is an
example where a non-compiled Mathematica program performs rather poorly. We will give only a
compiled version, that is very fast. The program constructs an Ulam spiral and is due to Daniel Lichtblau
of Wolfram Research:

http://en.wikipedia.org/wiki/Ulam_spiral

1. Introduction and a survey.cdf

ul anSpi ral = Conpil e[{{l en, _I nteger}},

Mbdul e[{dat = Range[len], x =0, y =0, shift =1, i =0, j =0, xincr = {1, 0, -1, 0},
yincr = {0, 1, 0, -1}, shiftincr = {0, 1, 0, 1}}, Sel ect [Tabl e[i ++;
If[i >shift, i =1; shift +=shiftincr [[Md[j, 4, 1111; j ++; 1;

X += xincr [[Mod[j, 4, 1]]]; y +=yincr [[Mod[j, 4, 1111;
I f [PrinmeQ[dat [[num]]1]1, {x, y}, {1000, 1000}], {num | en}],
Abs [First [#]] < 1000 &]1, {{PrinmeQ[_1, True | Fal se}}];

Making a spiral with 60 000 points takes only a fraction of a second:
I's = ul anSpi ral [60000]; // Ti m ng

{0.088024, Null}

We can view the spiral as a collection of points:

Li st Pl ot [I s]

PP O R Y PR S DAL R o4 P BT A
s SR L e i R

x
S 25
3

5 & S, %t X R :-t._..-ité%
X7 e 4 ’1;] 2
o Sl R L el
> Kou' e Aol L <,

ot A

g oot °&° s % 8ol 3 s
. m Z 5 y
5 - RS CHA T s ik

2 8% Y) oVt iy X ol ‘
3 o R i OO AT R Se Attt e S
'.'5{.’5:.':’{.. ':"v. 3 P ,.* YQEEi re.
=L, ; P it :

b I3 ':’.‘.';;'.h
LT
o, S oﬁ‘l X

4) 35 "' ;g. -.-.. .;:Q'so' - .?:'s:; 3
S -‘*’:";?,fgf’ﬁw&ﬂ*%é

ey

°

- 0

Y O
<
5",
b/

L)
<
;‘«?'

qt‘:.«

XA

or of lines

Li st Li nePl ot [l s]

|

In Mathematica version 8, this can be speeded up further by wusing the option
Conpi | ati onTar get — " C', which however, requires that a C-compiler be installed on the computer.

1. Introduction and a survey.cdf

= Specialized Mathematics

Mathematica contains a large number of specialized functions for various areas of mathematics, ranging
from Group Theory and Number Theory to Statistics (a vast number of statistical distributions are
available as built-in functions) and financial mathematics. A particularly interesting aspect is Mathemati-
ca’'s ability to obtain live financial data from the Internet and analyze them by means of a variety of
specific financial functions. As an example we compare the performance of the value of the index of the
American NASDAQ stock exchange (on which most US technology companies are represented) and of
Apple Computer Inc.

datal = Financial Data["~I XIC', "Jan. 1, 2007"7];

gl = Dat eLi st Pl ot [dat al, Joi ned -> True, Pl otLabel - "NASDAQ Conposite"];
dat a2 = Fi nanci al Data["AAPL", "Jan. 1, 2007"];

g2 = DatelListPlot [data2, Joined -> True, PlotLabel - "Apple"];

G aphi csGid[{{gl, 92}}]

NASDAQ Composite Apple
350
2500] 300
250 F
2000 - B 200L
150
g DUDEDUOL 0 T w0h/" " el
2007 2008 2009 2010 2011 2007 2008 2009 2010 2011
= Graphics

Mathematica has remarkable graphic capabilities. Here is an example of a mathematical graphic related
to the subject of iteration of functions in the complex plane and “fractals”.

1. Introduction and a survey.cdf

= Beyond Graphics - Interactive Dynamics

A completely new set of features, that have nothing quite similar in other programs, appeared in Mathe-
matica 6. These involve interactive “dynamic” abilities that are difficult to describe in a static format, but
can be seen below.

Wolfram Demonstrations Project

It is difficult to describe on a static page how remarkably useful this functionality is in all kinds of situa-
tions, including both research and teaching. A single interactive Mathematica notebook can replace
dozens of static pictures.

. n . .
Here we see one example. It shows the convergence of the power series >, ; Z—k on the unit disk |z] <1
n

for k=0,1, 2.... Here we only see the case n = 1, when the series converges in the unit disk and
everywhere on the boundary except at the point z = 1. The graphic on the left shows the complex
values over the unit disk of a finite sum of terms of the series, on the right we see the values of the
analytic function defined by the series. The modulus of the complex values of a function is represented
by the height of the graph and the argument by colour. In the first graphic a shorter finite sum is used, in
the second a longer. We can see the improvement in the approximation and the singular behaviour at
z = 1. We can also interactively choose any point on the unit disk and see the modulus of the difference
between the values of the corresponding finite sum and the infinite series. Again, this is the sort of thing
that would be very difficult to reproduce by other means.

http://demonstrations.wolfram.com/

10 1. Introduction and a survey.cdf

show boxes M
K _D 1
truncation —D 5

height M 5
ig L
modulus M 0.453
J
argument -D 0.001

| Unr esol ved Dynani ¢ Cont ent

The CDF Format and the CDF Player

With version 8 of Mathematica a new file format for Mathematica files was introduced.

The CDF player makes it easy to use Mathematica in class or at home even when students do not have
Mathematica themselves. It is a free program that can be downloaded from Wolfram’s web site.
Wolfram CDF Player

Wolfram Alpha

Wl f ramAl pha - Mathematica for everyone!

Wolfram Alpha received a great deal of publicity when it first appeared and it may even be better known
than Mathematica, but not many people seem to realize that Wolfram Alpha is based on Mathematica
and, in effect, provides the general public with free access to much of Mathematica’'s functionality.
Moreover, it does not require learning the Mathematica syntax. Indeed, the most famous aspect of
Wolfram Alpha is its ability to use “free form” mathematical input - just type in what you want Wolfram
Alpha to do for you in ordinary English (other language input is planned for the future) and Wolfram
Alpha will attempt to guess what you want and then will use Mathematica to obtain the answer. In fact,
the answers returned my Wolfram Alpha are generally more complete then Mathematica would normally
return (they can all be obtained with Mathematica but it may require several commands or even some

programming). Here is an example of computing the integral fx log(x) dx with Wolfram Alpha. Just type:
“indefinite integral of x log(x) “ and you will obtain the output shown below. In versions of Mathematica

earlier than 8, a very precise syntax would be needed to obtain the same result (version 8 of Mathemat-
ica can also use “free form” input).

http://demonstrations.wolfram.com/download-cdf-player.html
http://www.wolframalpha.com/

1. Introduction and a survey.cdf

11

1. Basic Principles

m 1. Overview of Mathematica Features. Mathematica as a Calculator.
You can get a lot of information from the Help Browser (to access it press F1 or use the Help menu).

One can use Mathematica just like a calculator: one types in formulas and Mathematica returns back
their values. Just press SHIFT + ENTER (RETURN) to tell Mathematica to evaluate the input you have
given it.

Example.

2+2

('press SHIFT + ENTER after putting the cursor after 2 + 2 to see the output)

2+2

With a text - based interface, you interact with Mathematica just by typing successive lines of input, and
getting back successive lines of output on your screen.

At each stage, Mathematica prints a prompt of the form In[n] := to tell you that it is ready to receive input.
When you have entered your input, Mathematica processes it, and then displays the result with a label
of the form Out[n] =.

Different text - based interfaces use slightly different schemes for letting Mathematica know when you
have finished typing your input.With some interfaces you press Shift - Return, while in others Return
alone is sufficient.

An important feature of Mathematica is its ability to handle formulas as well as numbers. Whenever you
use Mathematica, you are accessing the world' s largest collection of computational algorithms. Mathe-
matica knows about all the hundreds of special functions in pure and applied mathematics (e.g., Cheby-
shev polynomials, Bessel functions).

Example. The following function computes the 10th degree Chebyshev polynomial and the next one
draws the function on the interval [-1, 1].

ChebyshevT[10, X]

-1 +50x%?-400x*+1120 x5 - 1280 x8 + 512 x*°

2. Language Basics.cdf

Pl ot [ChebyshevT[10, x], {x, -1, 1}]

10

-10 —0.

Lets see what happens when we use the same input in WolframAl-
pha:

¥ WolframAlpha s,

' Plot[ChebyshevT[10, x], {x, -1, 1}] B

= Examples =< Random

Input interpretation:

plot Tinix) x=-11to1

I

—1{0
Computed by Wolfram Mathematica

T, (x) isthe Chebyshev polynomial of the first kind »

Plot:

Download as: PDF | Live Mathematica

Note the two links at the lower right hand corner: Download as PDF and Live Mathematica. The first one
is obvious. The second one needs the CDF Player plug-in to be installed.

In general, Mathematica notebooks allow importing and exporting of many formats. One can prepare
even a slide show in Mathematica.

2. Language Basics.cdf

m Kernel and FrontEnd

Mathematica consists of two independent computational environments called the FrontEnd and the
Kernel, which communicate by means of a protocol called MathLink. The Kernel does all the computa-
tions. The FrontEnd is what you see in front of you, including the window, menu, etc. You can use many
FrontEnds with one Kernel but the usual FrontEnd is what is know a notebook FrontEnd (there are also
ASCII front ends you can run using a terminal interface).

The Kernel is the basic programing environment and in fact it can be used to completely control the
FrontEnd. We will give a few examples, but we will not use much of this. For example:

nbl = Creat eDocunent [{Pl ot [x"2, {x, -1, 1}]1}]

Not ebookObj ect Untitled-18

| s = Not ebooks []

{Not ebookhj ect Writing Assistant] ,

Not ebookCbj ect Foundations of Programming in Mathematica Part 1] ,
Not ebook Obj ect Untitled—18] Not ebook Cbj ect[Untitled-13]
Not ebookCbj ect Untitled-11] Not ebook Obj ect[Untitled-15]
Not ebook Obj ect Installed Add-ons — Wolfram Mathematica], Not ebook Obj ect [Untitled-7 ||,
Not ebook Cbj ect Untitled—6] Not ebook Qbj ect[Untitled-5 }

Not ebookCbj ect

NotebookClose — Wolfram Mathematica] ,
Untitled—4] Not ebook Obj ect[Untitled-3 }

|
|
|
|
Not ebookCbj ect |
[
[
|
Not ebookbj ect |

Untitled—2], Not ebook Cbj ect[Messages]}

Sel ect edNot ebook []

Not ebook (hj ect Foundations of Programming in Mathematica Part 1
Set Sel ect edNot ebook [I s[[3]11]
Not ebookObj ect Untitled-18

The FrontEnd itself can also be “programmed” independently of the Kernel. This will be more important
for us later, in building interfaces.

2. Language Basics.cdf

m Mathematica notebooks

Mathematica is one of the largest single application programs ever developed, and it contains a vast
array of algorithms and important technical innovations. Among these innovations is the concept of
platform - independent interactive documents known as notebooks.

Every Mathematica notebook is a complete interactive document combining text, tables, graphics,
calculations, and other elements. A Mathematica notebook consists of a list of cells, which you can
group (sections etc).

Exercise. Click on different brackets on the right in this notebook with a right mouse button to find out
the style being used.

Palettes and buttons provide a simple but fully customizable point - and - click interface to Mathematica
(for Greek symbols, signs of integral, simple build - in functions, etc).

Recently Wolfram Research has expanded the concept of a notebook by introducing a new document
format called CDF (“Computable Document Format”) which unlike traditional notebooks allows interac-
tive “dynamic” content.

m The Unifying Idea of Mathematica

Mathematica is built on the powerful unifying idea that everything can be represented as a symbolic
expression.

m Main Features of Mathematica

Once one starts experimenting in Mathematica, one immediately notices some of its main features.

1. One important feature of Mathematica that differs from other computer languages, and from conven-
tional mathematical notation, is that function arguments are enclosed in square brackets, not parenthe-
ses. Parentheses in Mathematica are reserved specifically for indicating the grouping of terms. There is
obviously a need to distinguish giving arguments to a function from grouping terms together.

2. Names of built-in functions start with a capital letter.

3. Multiplication is represented either by * or by a space.

4. Powers are denoted by .

5. Numbers in scientific notation are entered, for example, as 2.5*"-4 or 2.5 10"-4.

6. There is a general convention in Mathematica that all function names are spelled out as full English
words, unless there is a standard mathematical abbreviation for them. The great advantage of this
scheme is that it is predictable. Once you know what a function does, you will usually be able to guess
exactly what its name is. If the names were abbreviated, you would always have to remember which
shortening of the standard English words was used.

7. Another feature of built - in Mathematica names is that they all start with capital letters. The capital
letter convention makes it easy to distinguish built - in objects. If Mathematica used max instead of Max
to represent the operation of finding a maximum, then you would never be able to use max as the name
of one of your variables. In addition, when you read programs written in Mathematica, the capitalization
of built - in names makes them easier to pick out.

8. N is a function that turns exact numbers and certain symbols into approximate numbers. For example:

N[Pi]

3. 14159

N[Sqrt [2], 30]

1.41421356237309504880168872421

Hence N cannot be used for a function or a variable name. The same is true of some other symbols

2. Language Basics.cdf

written with a capital letter (e.g. E,C). For that reason it is important to follow the convention that user
defined symbols begin with a small letter.

A quick access to help information is achieved by typing the question mark :

? Ful | Form

FullForm[expr] prints as the full form of expr, with no special syntax. >

? Part

expr([i]] or Part[expr, i] gives the il part of expr.

expr[[—i]] counts from the end.

expr([i, j, 1] or Part[expr,i, j,]is equivalent to expr[[i]][[j]]
expr([f{iy, iz, }]] gives a list of the parts iy, i;, of expr.
expr[[m;; n]] gives parts m through n.

expr([m;; n;; s|] gives parts mthrough nin steps of s. >

The quick access to help is also by highlighting the word and then pressing F1.

To get help for the command/operator you know you need to type ? and the command/operator. If you
do not know the operator, search the Help Browser.

?>>

expr >> filename wites expr to a file. Put [exprl, expr2, ... ,
"filename"] wites a sequence of expressions expri to a file. More...

Mathematica understands lists as {a, b, c} (in the full form it is List[a, b, c]). One can learn later on that
many objects in Mathematica are written by using lists. For instance, a matrix can be inserted in the
following way: go to the main menu; insert; tables/matrices:

O o o
O o o
O o o

Next one just needs to put the brackets and fill in the matrix elements by clicking on each empty square :

1 2 o
[DDD]
0o o

The resultis :

2 3 4

[123
56 7

The same matrix can be entered like this :

{{1, 2, 3}, {2, 3, 4}, {5, 6, 7}}

{{1, 2, 3}, {2, 3, 4}, {5, 6, 7}}

2. Language Basics.cdf

Here % means the last expression.

|

| |

Here %% means the last but one expression.

m
X
)
3
=
D

X

+
X
N

The sane can be ent er ed by ei t her usi ng pal ettes or by the fol | owi ng
sequence: Control key +2givesvo,; next oneneedstotypein"x";

thisgives+/x; next +x. Totypeinthesquareonecantypeinalt +
6 whichgives“andthentypein2intheenptysquare.

One can type many symbols without using palettes. For instance, to type in &, one needs to press esc
then type in pi then press esc once again.

Example.

The use of Ctrl+6:

esc+i+i+esc

esc+pi+esc

Alt+7 (applying to the blue bracket on the right): gives text in the notebook.

A very useful trick is the formula completion feature. Suppose, for example, you wish to use a function
whose name begins with Plot but you can’t quite remember the rest of it. Just type in the beginning of

2. Language Basics.cdf

the name and press the Control key (Command key on the Macintosh) and the letter K. You will see a
pop up menu of all functions whose name begins with Plot. If you decide you want to use the function
Plot3D you can type the name Plot3D and press Control and Shift keys together with the K key. You will
see a template:

Pl ot 3D[il { X [Xmin BEE Xmax }, { Y Ymin s | Ymax }]

m An overview of programming techniques

For most of the more complex problems that one wants to solve with Mathematica, one has to create
Mathematica programs oneself. Mathematica supports several styles of programming, and one is free to
choose the one, one is most comfortable with. However, it turns out that no single type of programming
suits all cases equally. As a result, it is useful to learn several different types of programming.

Traditional programming language such as C or Fortran use procedural programming (assignments and
loops such as Do, For, While and so on). They also exist in Mathematica. But while any Mathematica
program can, in principle, be written in a procedural way, this is rarely the best approach. In a symbolic
system like Mathematica, functional and rule - based programming typically yields programs that are
more efficient, and easier to understand.

Some types of programming :

Procedural Programming

List - based Programming (Many operations are automatically threaded over lists, a starting point to
learn).

Functional Programming

Rule - Based Programming

Mixed Programming Paradigms

There are typically many different ways to formulate a given problem in Mathematica. In almost all
cases, however, the most direct, precise and simple formulations will be best.

There are dozen of definitions of the factorial function (see later on).

m Expressions

All objects in Mathematica programming language are expressions. For example

a+b

a+b

{2, 3, 5}

{2, 3, 5}

StringTake["hel | 0", 4]

hel |

2. Language Basics.cdf

Sin[x]

|

Q

are all different kinds of expressions. These expressions often look like mathematical formulas (more
about that later on), which makes them more understandable and memorable to humans, but actually
that have an internal form that is very simple and very consistent. It is called the “Full Form” of an
expression and can be seen by applying the function FullForm to it (but there is a caveat, see below).

m FullForm of expressions

Each expression is either an Atom or has the form

where F is called the Head of the expression and al, a2, are expressions. Examples of atoms are
2,a,3/4,3.2, "cat". Whether something is an atom can be tested with the function AtomQ:

True

False

Expressions often do not look like their FullForms, for example a+b has FullForm:

Pluga, b]

Plus

Synbol

2. Language Basics.cdf

I nt eger

List [a, b]

List

Note that atoms also have Head:

Integer

String

o F & o

3 8 ° 3

S = 7 &
o
S
Q

[N

|

I nt eger

Evaluation of x to 1 caused this to happen. You can see the original Head by preventing evaluating e.g.

10

2. Language Basics.cdf

|Q|
:

(&)

| Hol d [Pl us[2, 3]]

|

i =
>
(0]
=
=
s
o
=
3
o
=%

)

| Hol d[Set [x, 1]]

It is important to distinguish the assignment Set from Equal, which is usually written as == and has

Hol d [Equal [x, 1]]

<
i

Fal se

[

2. Language Basics.cdf

m Parts of Expressions

A very important skill is extracting parts of expressions. An expression is really a tree-like object, as can
be seen using the function TreeForm:

TreeForm[expr] displays expr as a tree with different levels at different depths.
TreeForm[expr, n] displays expr as a tree only down to level n. >

Pl us[a, Power [b, 2], Power [c, 3], d]

Pl us

|E| Power Power @

{

{a, b% c3, d}

{ {b, 2, c, 3} i
{ Pl us i

12

2. Language Basics.cdf

Q

b2

(o]
w

Part::partw : Part 3 of ¢ does not exist. >

(a+b2+c3+d)[[3, 3]

Power

Q
>
o
0
o
o
>

You can also do this from the back :

a+b2+c+d

a+b?icd

[

2. Language Basics.cdf

b?+c3+d

Now, here comes a very nice and important fact: you can change an expression by an assignment to a
part of it. For example;

b2+c+d+x+y

1+b2+y+2z

m List, Vectors, Matrices, Tensors

A very important thing to notice that in Mathematica lists are just expressions with Head List:

'h |

{a, b, c, d}

A matrix is simply a list of lists of the same length:

Q

|

3

14

2. Language Basics.cdf

mat [[Al, 17]

{a, c}

mat [[Al, 2]]

{b, d}

mat [[1, All]]

{a, b}

mat [[2, All]]

{C1 d}
We will later see how to easily create arbitrarily large matrices using the functions Table and Array.

Table[i? {i, 1, 10}]

{1, 4, 9, 16, 25, 36, 49, 64, 81, 100}

Table[i *j, {i,

1! 5}! {J! 1! 5}]

10
15
12 16 20
10 15 20 25

© O W
=
o 0B

2
4
6
8

a b wnN PR

We already know that a Mathematica expression often looks different to human eyes than its internal
form (FullForm). However, the situation is made more complicated, by the fact that traditional mathemati-
cal notation is not unambiguous. Because of this and for reasons of history Mathematica has several
“forms” of input and output. The first versions of Mathematica has only two forms: InputForm, which
looked like a standard programming language (e.g. Fortran) way of writing mathematical formulas and
OutputForm, which is a little more like usual mathematics and has become completely obsolete (it
retained only for reasons of compatibility with very early Mathematica notebooks). Since then they have
both been replaced by StandardForm and TraditionalForm. StandardForm retains the basic principles of
InputForm but allows more usual mathematical expressions. TraditionalForm looks almost like the usual
mathematical notation. One can convert between these forms using the Convert To sub menu in the Cell
menu. One can also set the default forms for the Input and Output in the Preferences menu.

1. All built in functions start with a capital letter.
2. Square brackets [] are used as function brackets.

3. (InputForm) The basic arithmetical operations are denoted by + (addition),* or space (multiplication) /
(division), ~ (power).

2. Language Basics.cdf 15

4. There are the following inclusions InputForm c StandardForm c TraditionalForm but not in the
opposite direction.

http://reference.wolfram.com/Mathematica/guide/Expressions.html

http: //reference. wol fram com/mat hemati ca/tutori al /For msOf | nput AndQut put . ht m

m 2. Working with Lists

One of the most common expressions in Mathematica are lists.

Sol ve[x3 =1, x]

{x->1) {x->-(-1}, x> (-1)%3}}

% // N

{{x->1.}, {x->-0.5-0.8660251}, {x > -0.5+0.8660251}}

CoefficientList [ax"2 + bXx + c, X]

{c, b, a}

Opti ons [Pl ot]

1
{AI i gnnent Poi nt - Center, AspectRatio - —————, Axes - True,
Col denRat i o

AxeslLabel - None, AxesOrigin - Automatic, AxesStyle —» {}, Background - None,

Basel i nePosi ti on » Aut omatic, BaseStyle —» {}, Cippi ngStyl e - None,

Col or Functi on - Aut omati c, Col or Functi onScal i ng - True, Col or Qut put — Aut omati c,
Cont ent Sel ect abl e - Aut omat i ¢, Coor di nat esTool Opti ons - Aut omati c,

Di spl ayFuncti on :» $Di spl ayFuncti on, Epil og » {}, Eval uated - Aut onati c,

Eval uati onMoni t or - None, Excl usions - Automatic, Excl usi onsStyl e - None,

Filling -» None, FillingStyle » Automatic, Format Type > Tradi ti onal For m

Frame - Fal se, FranelLabel — None, FrameStyl e —» {}, FrameTi cks - Automati c,

FrameTi cksStyl e - {}, GidLines - None, GidLinesStyle - {}, | nageMargi ns - 0.,

| mgePaddi ng - Al I, | mageSi ze - Aut omati c, | mageSi zeRaw » Aut ormati c, Label Style —» {},
MaxRecur si on - Aut omati c, Mesh — None, MeshFunctions - {#1 &}, MeshShadi ng —» None,
MeshStyl e - Aut omati c, Met hod — Aut omati c, PerformanceCoal :» $Perf or manceCoal ,

Pl ot Label — None, Pl ot Poi nts - Automatic, Pl ot Range » {Full, Automatic},

Pl ot Ranged i ppi ng — True, Pl ot RangePaddi ng — Aut onatic, Pl ot Regi on - Aut omati c,
Pl ot Styl e > Automati c, Preservel mageOpti ons - Automatic, Prol og - {},

Regi onFunction - (True &), RotatelLabel - True, Ti cks - Aut omati c,

Ti cksStyl e - {}, Worki ngPreci si on - Machi nePr eci si on}

Let us also recall that the matrix is entered by using lists :

http://reference.wolfram.com/mathematica/guide/Expressions.html
http://reference.wolfram.com/mathematica/tutorial/FormsOfInputAndOutput.html

16

2. Language Basics.cdf

Let us learn how to generate lists and what basic operations one can perform with them. Another
useful command is Table

{3l 2l 31 6}

|

One can generate not only numbers but also other expressions :

{a[l], af2], a[31}

Some commonly used objects are already defined in Mathematica. For instance, the identity matrix :

For the matrices Mathematica has a lot of build - in operations

{41 _1}

{{21 3}! {_11 1}}

Basic operations for the lists include the following :

{2l 4l 6}

2. Language Basics.cdf 17

{2, 3, 4}

A scalar product is given by a dot

| bd+cf +as

However, one needs to be careful with length of the objects.

Thread::tdlen : Objects of unequal length in {1, 2, 3} + {1, 2, 3, 4} cannot be combined. >

{1, 2, 3} +{1, 2, 3, 4}

Other useful operations include

{a, b, c, a, b, d}

{a, b}

Also have a look at commands Insert, Delete and many others in the help. The name of the command
suggests unambiguously what it performs with a given list.

To get an element of the list one indicates its position.

18 2. Language Basics.cdf

{a1 b, c, d}[[_]-]]

d

Here - 1 means the first element counted from the end.

{a, b, ¢, d}[[2]]

b

If you do not know how many elements are in the list, you can always verify this by using Length

Length[{a, b, v}]

3

Length[{a, b, {v, w}}]

3

A similar command for the dimension of the list is Dimensions

D mensions[{a, b, {v, w}}]

{3}

Di nensions[{{a, b}, {v, w}}]

{2, 2}

This counts the elements of the first level in the list.

In applications one often encounters the problem to verify whether a given element is in the list and if so,
one might require further its position.

Position[{{a, b, c}, {a, f, g}}, al

{{1, 1}, {2, 11}

Here Position takes account of the nesting of lists.

Since the lists can be nested, it is useful to know that they can always be flattened.

?Flatten

Flatten[list] flattens out nested lists.
Flatten[list, n] flattens to level n.
Flatten[list, n, h] flattens subexpressions with head h.
Flatten[list, {{s11, S12, }, {Se1, S22, 1, }]
flattens list by combining all levels s; to make each level i in the result. >

[

2. Language Basics.cdf

{a, b, c, a, f, g}

To get rid of repeated elements one uses Union

{a, b, c, f, g}

From a given list one can get a list of permutations and other lists of a given length with all elements of
the original list

{{a, b, ¢}, {a, ¢, b}, {b, a, ¢}, {b, c, a}, {c, a, b}, {c, b, a}}

{{0, o0, 0}, (0, O, 13, {O, 1, O}, (O, 1, 1}, {1, O, O}, {1, O, 13}, {1, 1, O}, (1, 1, 1}}

{a, a+b, a+b+c, a+b+c+d, a+b+c+d+e, a+b+c+d+e+f}

= Apply and Map

Apply[f, expr] or f @@ expr replaces the head of expr by f.
Apply[f, expr, levelspec] replaces heads in parts of expr specified by levelspec. >

Let us form a new expression from the list and the other way round.

List [a, b, c]

3]
o
o

Tinmes[a, b, c]

20 2. Language Basics.cdf

Li st e@ (abc)

{a, b, ¢}

Another example is

Plus ee {a, b, c}

a+b+c

A more complicated example is to generate a list of coefficients (maybe useful for polynomial
expressions)

Subscri pt [A, #] &/@Table[i, {i, 1, 10}]

{Alx AZ! A31 A41 A51 AG: A7, A81 AQ! AlO}

Here /@ means Map.

? Map

Maplf, expr] or f /@ expr applies f to each element on the first level in expr.
Maplf, expr, levelspec] applies f to parts of expr specified by levelspec. >

Here there is a trivial example of forming a list.

Function[x, x*2] /eTable[i, {i, 1, 10}]

{1, 4, 9, 16, 25, 36, 49, 64, 81, 100}

k = Table[i, {i, 1, 10}]

{1, 2, 3, 4, 5,6, 7, 8 9, 10}

Therefore, the command /@ works as follows. It applies the function x + x? to every element of the list
k. (Here we meet an example of a pure function, the concept which will be discused below.)

Evaluation

A very important concept in Mathematica is that of evaluation. In Mathematica evaluation always takes
place after you write some input and press Shift + Enter. The process of evaluation is quite complicated,
and follows a definite sequence of steps. Understanding this process is important in advanced Mathemat:
ica programming and we will return to this in the future. Often the evaluation process takes place even if
nothing seems to happen. For example:

2. Language Basics.cdf

N

Hold[Times[2, Power[3, —1]]]

| |

| Rational [2, 3]

2+ 3i

Ful | Forn{ Hol d[2 + 3*1]]

1

g
3
S
2
N
()

True

3
c
@

9
=
=
?

An interesting special case are graphics.

22

2. Language Basics.cdf

gr = Plot[x?, {x, -1, 1}]

Short[InputForm[gr], 5]

G aphi cs |
{{{}, {}, {Hue[0.67, 0.6, 0.6], Line[{{-0.9999999591836735, 0.9999999183673486},
<< 272 >>, {0.9999999591836735, << 1 >>}}11}}, {<<6>>}]

We see that a plot of a function is also a Mathematica Graphics object. One can therefore use the
Mathematica programing language to control every detail of a graphic. Graphic programming in Mathe-
matica is a whole big subject, but we will see a few examples later on.

It is possible to think of Mathematica as an algebraic object, somewhat like a ring, with partial addition
and multiplication. This means that you can perform algebraic operations which are purely formal, for
example, you can raise a number to the power of a graphic:

2-1.0-05 05 10

In some situations arithmetical operations on objecs of different kind are defined, for example, it is
possible to add a number (or a symbol) to a list:

1,231 +1

{2, 3, 4

However, in certain cases, trying to perform such an operation on objects of different kind will cause a
error message:

2. Language Basics.cdf 23

{1,2 3} +{1, 3}
Thread::tdlen : Objects of unequal length in {1, 2, 3} + {1, 3} cannot be combined. >

{1, 3} +1{1, 2, 3}

Here is an example of abstract algebraic manipulation performed on strings:

Distribute[(" cat" + "dog") *" mouse"]

cat mouse + dog mouse

m The evaluation loop.

When you enter an input expression Mathematica’s Kernel evaluates in a very definite order. Understand
ing this order is important for Mathematica programming. The evaluation order will be described care-
fully later once we learn about rules and patterns. However, the basic idea is this: Mathematica evalu-
ates each part of the expression by turn, starting with the Head. It applies all rules it knows for the
expression, first user defined then built in ones, until it can no longer find a rule. Then it stops and
“returns” the result. (Sometimes this evaluation will not stop and we get into an infinite loop. Actually
Mathematica will almost always detect such situations and will stop, unless we change the defaults to
make it run for ever).

Programming using Patterns and Rules

Mathematica allows many different styles of programming. There is one style that, although not unique
to Mathematica, distinguishes it from most other similar systems. This is the possibility of using
"patterns” and "re-write rules" or just "rules".

The basic concepts in this kind of programming are "rule" and "pattern”. Rules can be local and global.

m Local Rules

A local rule always has the form

?Rule

lhs —> rhs or Ihs - rhs represents a rule that transforms Ihsto rhs. >

or

?RuleDelayed

lhs:>rhs or |hs:» rhs represents a rule that transforms Ihs to rhs, evaluating rhs only after the rule is used. >

Note that:

24 2. Language Basics.cdf

FullForm[lhs - rhs]

Rule[lhs, rhs]

FullForm[lhs:> rhs]

RuleDelayed[lhs, rhs]

The difference between Rule and RuleDelayed will be explained below. Most often Rule is used
together with the function ReplaceAll (see also Replace):

?ReplaceAll

expr /. rules applies a rule or list of rules in an
attenpt to transform each sub part of an expression expr. More...

Here are some examples of using rules (in some of these examples the output appears in Traditional-
Form).

x2+Sin[xy]+3 /. {X»>mx y->2mn}
3+712+Sin(2712)

Now we use a more general rule. This time we use a "pattern”

_ or Blank[] is a pattern object that can stand for any Mathematica expression.
_h or Blank[h] can stand for any expression with head h. >

X2 +Sinxyl+3/._ >x

T

The reason for the above result is that ReplaceAll starts looking for a match starting at the top level of
the expression and when it finds a match it stops looking for more. If we want to find a match at a
different level we can use the function Replace with a level specification. For example, here we replace
everything on level 3 of the expression with 7.

Replace[x® + Sin[xyl + 3, _ >, {3}]

X2 + 3+ sin(n?)

Level [x?+Sin[xy]+3, {3}]

X, y}

Replace]x® + Sin[x y] + 3, _ - x, {2}]

3+7a"

2. Language Basics.cdf 25

sin(x®y?) + %2 + 3

X2+ 8in(xy) +

X2+ 8in(xy) +

a(x, n(m, m), n(7(m, w)))

XX+ —+3
V2

Plus[3, Power[x, 2], Sin[Times[x, y]1]

sin(xy)+ —+3

These examples illustrate some of the very many ways of forming patterns in Mathematica. The most
basic pattern is x_ which stands for anything that is (locally) assigned the name x.

Here is an example where Rule and RuleDelayed give different answers:

sin(4)

Before using a rule it is a good idea to look at the FullForm of an expression. Here are some possible
“traps”™

26 2. Language Basics.cdf

Plus[Power[2, Rational[-1, 2]], Power[2, Rational[1, 2]]]

a+ -
a

Rule based programming is very convenient when dealing with graphics.

Disk[{0, 0}, 1]

2. Language Basics.cdf

Graphics[gr, ImageSize -» Small]

Graphics[{Red, gr}, ImageSize - Tiny]

Graphics[{Red, gr}, ImageSize —» {100, 100}] /. Disk - Circle

gr2= PolarPIot[Sin[30], {0, 0, g} ImageSize » SmaJI]

0.2 0.4 0.6 0.8

gr2/.Line— Polygon

27

28

2. Language Basics.cdf

Many Mathematica functions return a list of rules as the output.

fix - fxs (10438) {10 = (14235)

Note that this is actually a list of lists, each containing one rule.

This is very convenient, because we can use ReplaceAll to substitute these rules into other formulas.
For example:

(1 g(l_iﬁ), %(mﬁ)}

=
o
o
2

|{00

]

Here is a similar example with FindRoot instead of Solve

{x— 0.259171}

True

o Links

http : // reference.wolfram.com/mathematica/tutorial/PatternsAndTransformationRules.html

m Global Rules ("Functions")

Here is one way to define a "function” in Mathematica:

http://reference.wolfram.com/mathematica/tutorial/PatternsAndTransformationRules.html

2. Language Basics.cdf

N

|
[N

||

| |

{HoldPattern[f(x)] = X*}

Although people often call f defined in this way a function, actually it is only a "global rule". More pre-
cisely, when a definition of this kind is evaluated, Mathematica creates a rule for the symbol f, which it
uses every time when f is used. The rule is stored as a DownValue of f:

{HoldPattern[f(x)] = X*}

{HoldPattern[f(x)] = X*}

Here x_ is a "pattern”, which stands for "anything", with a temporary name "x". The rule says "change
f(anything) to anything®". HoldPattern prevents evaluation of f(x_) (which would otherwise be replaced
by x_2 but f[x_] is treated as a pattern for matching purposes.

So what happens when we evaluate definitions of this kind is this: Mathematica makes certain rules,
stores them, and then applies them in a certain order. Here is an example:

9

30

2. Language Basics.cdf

{HoldPattern[f(1)] - 2, HoldPattern[f(x_Real)] :» 3, HoldPattern[f (x_Symbol)] :> x?, HoldPattern f (x_Integer)] = 5}

{HoldPattern[f(x_Real)] :» 3, HoldPattern[f (x_Symbol)] :> x?, HoldPattern[f (x_Integer)] - 5}

{HoldPattern[f (x_Real)] = 3, HoldPattern[f (x_Symbol)] - x?, HoldPattern[f (x_Integer)] - 5, HoldPattern[f (x)] > O}

f(cat)

2. Language Basics.cdf

w

|

|

mN

f(cat)

(3.2 a%

The order in which rules are applied by Mathematica is roughly determined by two facts; more specific
rules are applied before more general rules, and rules of equal generality are applied in the order they
are entered.

In addition to DownValues there are also OwnValues and UpValues (and some other Values) created
as follows:

{HoldPattern[a] :» 1}

{HoldPattern[cos(b)] :» 2, HoldPattern[sin(b)] :» 2}

When an expression is evaluated, Mathematica applies the rules contained in UpValues, DownValues,
and so on in a certain order, after which it applies the built-in rules. It keeps evalutating the resulting

1

32 2. Language Basics.cdf

expression until it stops changing. Note also that certain built in rules are applied by Mathematica
automatically on evaluation but others require using a special function such as Simplify or FullSimplify.
For example the transformation

Clear[a]

while

cos(@)? + sin(@)?

sin%(@) + cos?(@)
does not automatically simplify to 1 but

Simplify[cos’(b) + sin®(b)]

8

Some simplifications only work with specific assumptions:

Simplify[\/x_2]
\/XT

Assuming[x >0, Simplify[‘/x—zu

X

Assuming[x <=0, Simplify[\/x_2]]

—-X

Mathematica generally tries to apply any transformations it knows to an expression until it no longer
changes. However, this is not the case when we use ReplaceAll. ReplaceAll looks for patterns in all the
parts of an expression, but only looks for one match in each part. So, if we have only more than one
rule, we may not obtain all the transformations we wish to get:

rules = {Log[x_Yy_1] = Log[x] +Log[y], Log[x_"k_] = kLog[x]};

2. Language Basics.cdf

Log[\/a (bc?)®] /.rul es

1I e
~tog(a(b<)

In order to obtain all transformations we should use ReplaceRepeated (//.) instead of ReplaceAll (/.).

Log[w/a (bc?)®] //.rul es

1
5 (log(a) + e(log(b) + dlog(c)))

Another important thing: Options of Mathematica’s functions are given as Rules.

Plot[x?, {x, 0, 1}]

10
0.8
0.6
0.4

0.2

Optiong[Plot]

1
{AIignmentPoi nt — Center, AspectRatio » —, Axes — True, AxesLabel —» None, AxesOrigin —» Automatic,
¢

AxesStyle - {}, Background - None, BaselinePosition —» Automatic, BaseStyle — {}, ClippingStyle —» None,
ColorFunction — Automatic, ColorFunctionScaling — True, ColorOutput — Automatic,

ContentSelectable —» Automatic, DisplayFunction :» $DisplayFunction, Epilog - {}, Evaluated —» Automatic,
EvaluationMonitor -» None, Exclusions —» Automatic, ExclusionsStyle —» None, Filling — None,

FillingStyle -» Automatic, FormatType :» TraditionalForm, Frame — False, Framelabel - None,

FrameStyle - {}, FrameTicks - Automatic, FrameTicksStyle - {}, GridLines — None, GridLinesStyle - {},
ImageMargins - 0., ImagePadding — All, ImageSize —» Automatic, LabelStyle — {}, MaxRecursion —» Automatic,
Mesh - None, MeshFunctions — {1 &}, MeshShading —» None, MeshStyle —» Automatic,

Method — Automatic, PerformanceGoal :» $PerformanceGoal, PlotLabel — None, PlotPoints —» Automatic,
PlotRange — {Full, Automatic}, PlotRangeClipping — True, PlotRangePadding — Automatic, PlotRegion - Automatic,
PlotStyle —» Automatic, Preservel mageOptions —» Automatic, Prolog — {}, RegionFunction - (True &),

Rotatel abel — True, Ticks —» Automatic, TicksStyle - {}, WorkingPrecision - Machi nePrecision}

2. Language Basics.cdf

Plot[x% {x, 0, 1}, Axes - False, Frame - True, GridLines - Automatic, PlotStyle - {Red, Dashing[0.01]}]

10FT T

0.8 z

0.6

0.4

0.2 =

00Fr-7-""", L L L L
0.0 0.2 0.4 0.6 0.8 10

m The difference between := and =

The difference between :=and= is exactly the same as that between :» and —. Note these FullForms:

FullForm[Hold[a = 3]]

Hold[Set[a, 3]]

FullForm[Hold[a:= 3]]

Hold[SetDelayed[a, 3]]

Consider the following two definitions:
f[p_] := Expand[p]

glp_] = Expand[p];

?2=
Il hs = rhs evaluates rhs and assigns the result to be

the value of I hs. Fromthen on, |hs is replaced by rhs whenever
it appears. {lI1, 12, ... } = (r1, r2, ... } evaluates the ri, and

assigns the results to be the values of the corresponding |i. More...l
?:=

Ihs : = rhs assigns rhs to be the del ayed val ue
of Ihs. rhs is maintained in an unevaluated form When |hs

appears, it is replaced by rhs, evaluated afresh each tine. More...l

If we apply them to an expression like (a + b)® we will get quite different results:

2. Language Basics.cdf 35

f[@@+ b))

a®+3ba’?+3b%a+b’

gla+ b

(@a+h)®

The reason is that = evaluates the right hand side before assigning the evaluated value to the left hand
side, while := assigns the unevaluated right hand side to the left hand side.

http : // reference.wolfram.com/mathematica/tutorial/ManipulatingValueLists.html

http : // reference.wolfram.com/mathematica/tutorial/ManipulatingOptions.html

Functions and Functional Programming

m Pure Functions

In addition to functions defined by means of global rules Mathematica also has "genuine functions",
defined as follows:

Function|x, x%|[c]

CS

Note that such a function does not need to have a name (so it is called an anonymous function),
although we can of course give it a name:

f = Function[x, x*;
f[3]

27

Clear[f]

OwnValues[f]

{HoldPattern[f] > Function[x, x|}

We can also, of course, in the same way, construct functions of several variables.

http://reference.wolfram.com/mathematica/tutorial/ManipulatingValueLists.html
http://reference.wolfram.com/mathematica/tutorial/ManipulatingOptions.html

36

2. Language Basics.cdf

There are two problems with this approach. First, it is inconvenient to use letters for variable names.
This problem is solved by using the notation #1, #2 ,... for the first, second, third etc., arguments. Thus:

Lastly, the word Function can be replaced by the shorthand & after the end of the function, as in

[y
|

m Predicates (Boolean Functions)

A common class of functions are functions whose value are the Boolean constants True and False.
Such functions are called predicates. Most built in Mathematica predicates have names that end in Q:

False

False

False

Here are two ways of defining a predicate that test is a number is larger than 5:

False

p>5

Here is the same thing done using a pure function

2. Language Basics.cdf

w

| True

Such pure functions can be used in patterns:

120

100

120

100

m Functions that take Functions as arguments

In functional programming a very important role is played by functions that take functions as arguments.

The most important of these are Map and Apply:

7

38

2. Language Basics.cdf

{f@), f(b), f(o), f(d)}

—
)
—

—
=
—

—
o
—

—
%)
~

f0'@ f(y)'@

f(xy)

x
s
<

x
<

|

g(f9, f(y)

0
>
o
=
=
o
—t
=
o
=

2. Language Basics.cdf 39

m Attributes and Listability

The behavior of Mathematica functions and global rules is affected by so called Attributes. Each built-in
function has some attributes, for example

{Listable, NumericFunction, Protected}

{Flat, Listable, NumericFunction, Oneldentity, Orderless, Protected}

The most important attribute of functions is the attribute Listable. Let's explain briefly what it does.

{1,2,3,4,5,6,7, 8,9, 10}

{f), 12, 13), 14, 1(5), 1(6), f(7), (8), £(9), f(10)}

If we give f the Attribute Listable we will not need to use Map.

{f), 12, 13), 1(4), 1(5), 1(6), f(7), (8), £(9), f(10)}

In addition

{fa o), f(b, d)}

{f(a b), f(a o)}

The attribute Listable of Plus is the reason for the following behavior:

| {5 7, 9}

40

2. Language Basics.cdf

{3,4,5, 6

The attributes Orderless, Flat and Oneldentity are interesting, but complicated. Let's see an illustration

f(a, b)

||

f(a b, ¢

||

Another group of important attributes are HoldFirst, HoldAll, HoldRest

{HoldFirst, Protected, SequenceHold}

{HoldAll, Protected, SequenceHold}

2. Language Basics.cdf 41

http : // reference.wolfram.com/mathematica/tutorial/PureFunctions.html
http : // reference.wolfram.com/mathematica/tutorial/ApplyingFunctionsToListsAndOtherExpressions.html
http : // reference.wolfram.com/mathematica/tutorial/Attributes.html

http : // reference.wolfram.com/mathematica/tutorial/SelectingPartsOfExpressionsWithFunctions.html

http://reference.wolfram.com/mathematica/tutorial/PureFunctions.html
http://reference.wolfram.com/mathematica/tutorial/ApplyingFunctionsToListsAndOtherExpressions.html
http://reference.wolfram.com/mathematica/tutorial/Attributes.html
http://reference.wolfram.com/mathematica/tutorial/SelectingPartsOfExpressionsWithFunctions.html

3. An Overview of Graphics

One can use Mathematica to make 2 D and 3 D graphics. It is perhaps the most straightforward and, at
the same time, the most complicated section. It is straightforward since all the commands and properties
one can find in the Help Browser. However, the complicated part is to find the property one needs
among hundreds of similar ones. Below there are only examples of some of the most commongly used
graphic features. Moreover, the older versions of Mathematica might have different names and com-
mands. The following pictures are drawn in Mathematica 7. The pictures are mostly self-explanatory and
for the useage of unknown functions the reader is referred to the documentation center.

Plot [Sin[x*], {x, 0, 4}, PlotRange » {0, 1.2}]

12~

Paranetri cPl ot 3D[{Sin[z] Sin[t], Sin[z] Cos[t], z},
{z, -m =}, {t, 0, 2z}, PlotRange » {{0, 1}, {0, 1}, {0, 1}}]

10

2 3. Graphics.nb

3. Graphics.nb 3

4 3. Graphics.nb

3. Graphics.nb

data = Tabl e[Si n[x] + Random[Real , {-0.1, 0.1}], {Xx, 0, 2w 0.1}]

{-0. 0994549, 0.0025176, 0.169147, 0.35959, 0.426721, 0.504849, 0. 5569,
0. 629977, 0.689323, 0.700252, 0.881904, 0.895217, 1.0026, 1.00545, 1.06306,
1.009, 0.983381, 1.07258, 0.893839, 0.900578, 0.940057, 0.831201, 0. 780229,
0. 703249, 0.705678, 0.563779, 0.416756, 0.420854, 0.4279, 0.279133,
0.150118, -0.0507052, -0.0374291, -0.134788, -0.186977, -0.347078,
-0.392135, -0.448773, -0.520907, -0.595565, -0.790225, -0.918132,
-0. 800616, -0.878242, -0.915784, -0.945376, -0.994464, -1.01954, -1. 09056,
-1.01561, -0.960952, -0.838909, -0.970764, -0.805304, -0.68379, -0.626348,
-0.639521, -0.64668, -0.544192, -0.398389, -0.238055, -0.25922, -0. 15363}

Li st Pl ot [dat a]

1.0

0.5

Li st Li nePl ot [dat a]

0.5

-1.0+

Pl ot [{Bessel J[2, z], Bessel J[3, z], Bessel J[4, z]},
{z, -10, 16}, PlotStyle - {Hue[0.5], Hue[0. 6], Hue[O0.7]1}]

04+

Pl ot3D[Sin[xy], {X, 0, 2x}, {y, 0, 2x}, PlotPoints -» 40]

3. Graphics.nb

3. Graphics.nb

Plot3D[Sin[xy], {X, 0, 2x}, {y, 0, 2}, PlotPoints » 10]

Plot3D[4 e”*- D -0-2% yx, -2, 2}, {y, -3, 3},
Pl ot Range -> Al | , AxeslLabel -> {"x", "y", "2z" }]

3. Graphics.nb

Show([%, ViewMertical » {1, 0, 0}]

Pl ot [Sin[x], {X, O, 2x}, Background -» GrayLevel [0.5]]

Quit []

10

3. Graphics.nb

Pol yhedr onDat a[" Dodecahedr on"]

The function Show is used to combine several graphics togather.

plotl =Plot [Sin[x], {X, -2Pi, 2x}, PlotStyle » Red];

plot2 =Plot [Sin[2x], {X, -2Pi, 2x}, PlotStyl e - G een];

plot3 = Graphics[{Yellow, Crcle[{O, 0}, 1]}];

3. Graphics.nb

Show[pl ot 1, pl ot2, plot3, AspectRati o » Automati c]

1.0
0.5 E

2 7/E
5
<10

/é/

11

Graphics[primitives, options]represents a two-dimensional graphical image (circle, disc, point, line,
polygon, ...).

vertices = {{0, -1}, {1, 0}, {0, 13}, {-1, 0}, {0, -11}3;
p = G aphi cs[{RGBCol or [1, 0, O], Pol ygon[vertices]}];

| = Graphi cs[{Thi ckness[.02], RGBCol or [0, O, 1], Line[vertices]}];

Show[p, |1

pl = Plot [Sin[x], {X, 0, 2x}]

1.0

0.5

=iL{2)

12 3. Graphics.nb

p2 = Plot [Sin[2Xx], {X, 0, 27x}];

G aphi csGid[{{pl, p2}}]

1.0 10
05 0.5
1 2 3\ 4 5 1 \2 4 \5 6
-05 -05
-10 -10

G aphi csGid[{{pl}, {p2}}]

10}

0.5~

-05-

-10+

10}

05+

-05-

-10r-

RandonReal [{0, 1}, {24, 2}]
({0. 455485, 0.477362}, {0.70587, 0.75487}, {0.554577, 0.621808},

{0.801264, 0.342213}, {0.348274, 0.598254}, {0.378546, 0.520606},

{0. 598194, 0.411677}, {0.856736, 0.864341}, {0.807134, 0.0230063},
{0. 878315, 0.454539}, {0.874411, 0.0559939}, {0.32683, 0.456437},

{0.781892, 0.647471}, {0.975297, 0.293457}, {0.453405, 0.246344},

{0. 452779, 0.784384}, {0.500323, 0.796357}, {0.218455, 0.890308},

{0. 128262, 0.63954}, {0.927231, 0.22219}, {0.287996, 0.846428},

{0. 823864, 0.134597}, {0.773817, 0.869142}, {0.264906, 0.357928}}

3. Graphics.nb

G aphi cs [Li ne[RandonReal [{0, 1}, {24, 2}1]11]

G aphi cs[{Hue[.77], Rectangl e[{0, 0O}, {5, 1}1, Hue[.17], Rectangle[{3, 0}, {4, 2}1}]

13

14 3. Graphics.nb

G aphi cs3D[{Cuboi d[{0, O, 0}], Cuboid[{O, O, 1}], Cuboid[{O, 1, 1}], Cuboid[{1, 1, 1}1}]

G aphi cs[{O’rcIe[{O, 03}, 11, Grcle[{O, 0}, {2, 1}]1, Circle[{g, -—}, _ {5 2}]}

Aspect Rati o -> Automati c, Axes -> Autonat i c]

3. Graphics.nb

InscribedCircleData[pA: {_, _}, pB: {_, _}, pC: {_, _}]:=
I\/bdule[{AB, BC, AC, a, b, c, s, pP, pQ AP, BQ p, 0, pPS, 0S, pgs, incenter, inradius},

AB = pB-pA; BC=pC-pB; AC=pC-pA; a=+BC.BC; b=+ACAC; c =AB AB;
AP. AB AP. AC

AP = pB+p BC-pA; BQ=pA+qAC-pB; ps =So|ve[== , p][[l, 111;
c b
BQ BC BQ (-AB)
ds = Sol ve| == . Q] L[, 111; pP=pB+pBC/. ps;
a c

PQ=pA+qAC/.gs; pgs = Sol ve[pA+p (pP-pA) == pB+q (pQ-pB), {p, q}1[[1]];

1
incenter = pA+p (pP-pA) /.pgs; s=— (a+b+c);
2

(s-a) (s-Db) (s-c)
i nradi us = ; {incenter, inradi us}]
s

InscribedCircle[pA: {_, _}, pB: {_, _}, pC: {_, _}] :=Gaphics]|
{Li ne[{pA, pB, pC, pA}]1, Circle[Sequenceeel nscribedCircleData[pA pB, pC]l},
Aspect Rati o -> Automatic, Pl ot Range -> Al l, Frane -> True]

InscribedCrcle[{1.8, 6.8}, {3.1, 1.1}, {6.4, 2.4}]

15

3. Graphics.nb

G aphi cs[{{RGBCol or [0, O, 1], Disk[{O, O}, {2, 1}1},
{RG&BCol or [0, 1, 1], Disk[{O, O}, 11}, {RGBCol or [1, 1, O], Disk[{O, O}, 2, {O, 1}1}},
Aspect Rati o » Automati c, Axes - Autonati c]

15

N

G aphi cs[{Text ["Left", {-1, 0}, {-1, 0}], Text ["Right", {1, 0}, {1, 0}1],
Text [" Above", {0, 1}, {0, -1}], Text ["Bel ow', {0, -1}, {0, 1}],
{Poi nt Si ze[. 075], RGBCol or [1, O, O], Point [{O, 0}1}}, Pl ot Range -» Al |]

Above

Leit . Right

Below

3. Graphics.nb

3. Graphics.nb

18

3. Graphics.nb 19

20 3. Graphics.nb

3. Graphics.nb 21

22

3. Graphics.nb

VectorPl ot [{Sin[x], Cos[yl}, {X, O, Pi}, {y, 0, Pi}]

8l

o

215 }
2.0 }
15 }
ol
osf

0.0

vy
\
\
Y
\

AN S S O O O O U N

\RARARE SR ERRER
IRARRE SRR RRR
IRRR R TR RN
OO
VORI AR R)

- = = P > > -

/
f
f
)
f

= S A

7 PO P G G G G . S G 7 t

AT YT VIS
AAAANNAAANA
AAAAAAA

At
A At
PAAAAAAAAA LA
A £
£/ £t

f
b
P
.
}

0.0

/
b .
AAAAAAA S
LLGT e,

15 30

Revol ut i onPl ot 300
Sin[x], {x, 0, 2 Pi}]

3. Graphics.nb

23

Revol utionPlot3D[{1.1 Sin[u], u*2},
{u, 0, 3 Pi/2}, BoxRatios -> {1, 1, 2}]

Revol uti onPl ot 3D[x*2, {x, 0, 1},
Revol utionAxis -> {1, 1, 1}]

3. Graphics.nb

3. Graphics.nb

25

Contour Pl ot [Sin[3x] Cos[x +Yy], {x, 0, 3}, {y, O, 3},
Cont our Label s -» Aut omati ¢, Col or Functi on » "Pastel "]

05
I /\]
0.0 R S
0.0 0.5 1.0 15 2.0 25 3.0

Par anet ri cPl ot 3D[{Cos[v] +0.3Sin[3u] +0.04Sin[20V], u,
Sin[v] +0.3Cos[3u] +0.04Sin[20Vv]}, {u, -m, =}, {v, -7 =z}, PlotPoints - 100,
PlotStyl e » {Orange, Specul arity[Wiite, 10]}, Axes -» None, Mesh -» None]

One can innsert a plot into a disk:

3. Graphics.nb

{{x > Interpol ati ngFunction[{{0., 50.}}, <>]}}

3. Graphics.nb

4. Dynamic Interactivity

Mathematica has several dynamic elements. It is very useful for visualization of the results if the prob-
lem contains some parameters and one wants to study it under the change of those parameters. You
can study the following examples.

Example 1.

4. Intorduction to Dynamic Interactivity.nb

Other examples.

4. Intorduction to Dynamic Interactivity.nb

Dynami c [Pl ot [Sin[(n+1) x], {x, 0, 6}1]

10+

-05+-

-1.0+

Dynam cModul e[{x}, {Slider [Dynam c[x], {1, 5}], Dynam c[Plot [Sin[xi], {i, 0, 2Pi }11}1

|] Aﬂﬂ
< VU

{Sl i der 2D[Dynami c[x]], Dynam c[x]}

3

{ o]
O

{I nput Fi el d[Dynam c[x]], Dynam c[x]}

(o o)
{o. ,o.}

{Slider [Dynamic[l1-Yy, (y =1-#) &1, Dynamc[y]}

i3 Y

{Sli der [Dynami c[x]], Slider [Dynam c[1l-Xx, (X =1-#) &1}

{4 ' 3

4. Intorduction to Dynamic Interactivity.nb

Phase Parameter -B

Multiplier

0.5

10

X @

< T
N O

4. Intorduction to Dynamic Interactivity.nb

Dynami cModul e[{6 = 0}, Gid[{{Slider [Dynam c[e], {0, 100}],
Dynam cePol arPl ot [t, {t, -Pi, e}, InageSize - Tinyl}}]]

[

)
$

Mani pul at e[Pol arPl ot [6, {6, 0, t}, PlotRange » 20], {t, 1, 6Pi }]

10—

-20 20

10+~

-20+—

Dynam cModul e[{col = Green}, Event Handl er [
Style["text", FontCol or -» Dynam c[col]], {"Mused icked" :» (col = Red)}]1]

t ext

Dynam cModul e[{col = Green}, EventHandl er [Styl e["text", Font Col or -» Dynam c[col]],

{"Moused i cked" :» (col =col /. {Red - G een, Geen -» Red})}]]

interpol ationCurvel[p_, n_]:=
Modul e[{x, f =Interpolation[p, InterpolationOder »nj},
Fi rst @Pl ot [Eval uat eef [x], {X, Mn[p[[All, 1111, Max[p[[All, 1111}11;

4. Intorduction to Dynamic Interactivity.nb

Dynami cModul e[{n =2, p={}, Cc = {}},
Event Handl er [Dynani c@G aphi cs[{Poi nt [p], c}, Pl otRange -» 1, Frane -» True],
" MouseDown" : >
(p = Uni on[Sort @Append [p, MousePosition["G aphics"]],
SanmeTest -» (First [#1] = First [#2] &) 1;
I f [Length[p] 2n+1, c =interpolationCurvel[p, n11)11

1.0 f—

05+

00—

~10 I I | I I | |
~1.0 tos | 0.0 05 1.0

G aphi cs[Locator [{0, 0}], Pl ot Range - 2]

&

4. Intorduction to Dynamic Interactivity.nb

= Manipulate options

4. Intorduction to Dynamic Interactivity.nb

4. Intorduction to Dynamic Interactivity.nb

10

Mani pul at e [Gr aphi cs [Pol ygon[pt], Pl ot Range - 2],
{{pt, {{O0, O}, {1, O}, {1, 13}, {O, 13}, {1, -13}}, Locator}]

4. Intorduction to Dynamic Interactivity.nb

4. Intorduction to Dynamic Interactivity.nb

11

12

f Sin

10

0.5

-1.0

4. Intorduction to Dynamic Interactivity.nb

4. Intorduction to Dynamic Interactivity.nb

Mani pul at e [Gr aphi cs[{col or, Disk[]}], {color, Purple}]

coor [——

Mani pul at e[{x1, x2, x3}, {x1, 0, 1}, {x2, {1, 2, 3}}, {x3, {True, Fal se}}]

<7 2]

X3D

{0.612, 1, Fal se}

14 4. Intorduction to Dynamic Interactivity.nb

{Mani pul at e [Pl ot [f [x], {Xx, O, 2Pi }], {f, {Sin, Cos, Tan, Cot }}], Manipul ate[
Pl ot [f [x], {x, O, 2Pi}], {f, {Sin, Cos, Tan, Cot}, Control Type » PopupMenu}]}

f ISin Cosl Tanl Cotl

10

0.5

-05

-1.0

@
5

f

10

05

-05

-1.0

Mani pul ate[x, {{x, 0}, Button["randonm, x = RandonReal []] &}]

x | random

4. Intorduction to Dynamic Interactivity.nb

Mani pul ate[x, {{x, 1}, 0, 5}, {X, Range[5]}]

-HEEEm

1

Mani pul at e[Bl ock[{f = F[x +1 y]}, ParanetricPl ot [
Evaluate[{Re[f]1, Im[f]}1, {x, -Pi, Pi}, {y, -2, 2}11, {F, {Sin, Tan, Cot }}]

F|sin Tan | Cot

-0 -03 oo 03 Lo

Quit []

15

16

4. Intorduction to Dynamic Interactivity.nb

Mani pul ate[Pl ot 3D[Sin[nxYy], {X, 0, 3}, {y, O, 3}1, {n, 1, 4, 0.5}]

)

4. Intorduction to Dynamic Interactivity.nb

17

18 4. Intorduction to Dynamic Interactivity.nb

Mani pul at e[Modul e[{x}, Wth[
{sol =NDSolve[{x'"' [t] +Xx[t]*"3 =aSin[wt +B], X[0] =pt [[1]], X' [0] =pt [[2]11}, X,
{t, 0, 50313, ParanetricPlot [{x[t], x"[t]} /. sol, {t, O, t1}, PlotRange -» 5111,
{a, -8, 3}, {B, -m =}, {w, 1, 5}, {t1, 10, 50}, {{pt, {0, 0}}, Locator},
SaveDefinitions » True]

]

=

(o I o I o N

-
[

4. Intorduction to Dynamic Interactivity.nb

Mani pul at e[

1
—, {k, 0, n}]], {n, 0, 100}, Pl ot Range-»AII], {, 1, 10, 1}]

Pl ot [Eval uate[Sum[T
i

'{J

20+

15+

10

05+

Mani pul at e [Pol yhedr onDat a[pol y], {poly, Pol yhedronData[]}]

oy {ANtiprism, 4}

20

4. Intorduction to Dynamic Interactivity.nb

Mani pul ate[Wth[

{i ng = | mageAd;j ust [w {contrast, bright ness}]},

Col um [{| mageHi st ogram[i ng], | nagel[i ng, | mageSi ze -» Al |]}]],
{{brightness, 0}, -1, 1}, {{contrast, 0}, -1, 1}]

brightness

c

contrast

()

5.More Advanced Topics.

Some Other topics

= Dynamic Programming

Recursive programs are programs that "refer to themselves". Such programs can be very slow because
they use a lot of "stack memory". One way to speed them up is by means of "dynamic programming" or
"functions that remember their values". The best way to understand this method is by means of an
example.

o Fast Fibonacci numbers.

a[n] /. RSolve[{a[n] ==a[n-1] +a[n-2], a[0] =0, a[l] =1}, a[n], n][[1]]

Fn
Funct i onExpand [Fi bonacci [n]]

ot) (g o)

Let's compare the following two definitions of the Fibonacci numbers. First we start with a usual recur-
sive definition.

Fib1[0] = O; Fib1[1] = 1;
Fibl[n_]:=Fibl[n - 1] + Fib1[n - 2]

Timing[Fib1[30]]

{2.26725, 832040}

This is very slow and already the 30th Fibonacci number takes a noticeable time to compute. Next, we
try "dynamic programing”. The definition looks a little strange; note the use of := and = .

Cl ear [Fi b2]

Fib2[0] = O; Fib2[1] = 1;

Fib2[n_] := Fib2[n] = Fib2[n — 1] + Fib2[n — 2]

Timing[Fib2[30]]

{0.000267, 832040}
Computing even the 50th Fibonacci number takes virtually no time.

We can see the difference between the two definitions by using the function Trace:

Trace[Fib1[5]]

(Fibl[5], Fibl[5-1] +Fib1[5-2], {{5-1, 4}, Fib1[4],

Fibl[4-1] +Fibl[4-2], {{4-1, 3}, Fibl[3], Fibl[3-1] +Fibl[3-2],
({3-1, 2}, Fib1[2], Fibl1[2-1] +Fibl[2-2], {{2-1, 1}, Fibl[1], 1},
{{2-2, 0}, Fib1[0], O}, 1+0, 1}, {{3-2, 1}, Fibl[1l], 1}, 1+1, 23},

{{4-2, 2}, Fibl[2], Fibl[2-1] +Fibl[2-2], {{2-1, 1}, Fib1[1], 1},
{{2-2, 0}, Fib1[0], 0}, 1+0, 1}, 2+1, 3},

({5-2, 3}, Fib1([3], Fib1[3-1] +Fibl1[3-2],

{{3-1, 2}, Fibl1[2], Fibl[2-1] +Fibl[2-2], {{2-1, 1}, Fib1[1], 1},

5. More Advanced Topics.nb

({2-2, 0}, Fib1[0], O}, 1+0, 1}, {{3-2, 1}, Fibl[1l], 1}, 1+1, 2}, 3+2, 5}

Trace[Fib2[5]]

(Fib2[5], Fib2[5] = Fib2[5-1] + Fib2[5 - 2],
({{5-1, 4}, Fib2[4], Fib2[4] =Fib2[4-1] +Fib2[4 - 2],
({{4-1, 3}, Fib2[3], Fib2[3] =Fib2[3-1] +Fib2[3-2],
({{3-1, 2}, Fib2[2], Fib2[2] =Fib2[2 1] +Fib2[2 - 2],
({{2-1, 13}, Fib2[1], 1}, {{2-2, 0}, Fib2[0], 0}, 1+0, 1}, Fib2
({3-2, 1}, Fib2[1], 1}, 1+1, 2}, Fib2[3] =2, 2},
({4-2, 2}, Fib2[2], 1}, 2+1, 3}, Fib2[4] =3, 3},
({5-2, 3}, Fib2(3], 2}, 3+2, 5}, Fib2[5] =5, 5}

[2} =1, 1}1

The first function repeatedly performs the same computation (see Fib1[3] and Fib2[3] in the output of

Trace above).

We can also check what Mathematica knows about the functions Fib1l and Fib2

?Fibl
d obal " Fi bl
Fibl[0] =0
Fibl[1] =1
Fibl[n_]:=Fibln-1] +Fibl[n-2]

DownValues[Fib1]

{Hol dPattern[Fibl[0]] :» 0, HoldPattern[Fibl[1]] > 1,
Hol dPattern[Fibl[n_]] »Fibl[n-1] +Fibl[n-2]}

?Fib2

5. More Advanced Topics.nb 3

d obal " Fi b2

Fib2[0] =0

Fib2[1] = 1

Fib2[2] = 1

Fib2[3] =2

Fib2[4] =3

Fib2[5] =5

Fib2[n_]:=Fib2[n] =Fib2[n-1] +Fib2[n-2]

The point is that the last definition makes Fib2 remember each value that it has once computed so it
never has to compute it again. The result is much better performance at the cost of some memory
consumption, of course. This can be recovered by using

Clear[Fib2]

Fi bonacci [30] // Ti m ng

{0.000012, 832040}

el= —(\/?+1),
2
1
= 5(1—\/3);
bl= i(«/§+5).
10
b2= = (5-V5)
10

Fib3(n_) := Expand[blel"* + b2e2""!]

Fi b3[30]

832040

Imperative (Procedural) and Functional programming

So far we have considered two programming styles that one can use in Mathematica - rule based and
functional. There is also another style, called procedural or imperative. This is the style used by most
traditional programming languages, such as C. The characteristic of this style is the use of explicit
assignments to variables, and of loops that change the state of a variable. Here is an example of a
procedural program which changes the state of a variable x by using assignments:

Cl ear [x]

5. More Advanced Topics.nb

X=LXx=X+1LXx=x+1x=x+1LX=X+1;Xx=x+1x=x+1;

This can be also written as

FullForm[Hold[x=1; x=x+ L x=x+ L x=x+ 1L x=x+ 1 x=x+1; x=x+1;]]

Hold[CompoundExpression[Set[x, 1], Set[x, Plus[x, 1]], Set[x, Plus[x, 1]],
Set[x, Plus[x, 1]], Set[x, Plus[x, 1]], Set[x, Plugx, 1]], Set[x, Plus[x, 1]], Null]]

Note that Mathematica automatically returns the value of the last argument of ComposedExpression. In
most procedural languages no final value would be returned and you need an explicit Return or Print
statement Return[x] or Print[x] at the end. In Mathematica you never need these statements for this
purpose.

Below is another way to do the same thing, using a Do loop. Note that the Do loop does not return
anything, so we need x at the end if we wish to return the value of x.

Clear[x]

x=1; Do[x =X+ 1, {6}]; X

X = 1; Do[x++, {6}]; X

Mathematica has other procedural loops: While and For. They should be used sparingly, particularly the
last one which is very inefficient. In general you can get much better performance from Mathematica by
using functional constructions: Nest, Fold and FixedPoint and in version 6, Accumulate.

= Local Variables

Because in imperative programs assignments are used, one has to be careful not to accidentally use or
redefine variables to which values may have been assigned earlier. The best way to protect oneself from
this possibility is by means of local variables. Mathematica has three basic constructions for localizing
variables: Block, Module and With.

?Block

Block[{x, y, ...}, expr] specifies that expr is to be evaluated with local values for the symbols x, vy,
Block[{x = X, ...}, expr] defines initial local values for x, >

5. More Advanced Topics.nb

x = 3; Block[{x}, x = 1]

1

Although inside Block we set the value of x to 1, outside it remained equal to 3. The same will happen if
we use Module

?Module

Module[{x, y, ...}, expr] specifies that occurrences of the symbols X, y, .. in expr should be treated as local.
Module[{x = X, ...}, expr] defines initial values for x, .. . >

X=3;

Module[{x, y, z=1}, x=5; y=x+ 7]

6

Block and Module work in a quite different way. When you localize a variable in Block its value is first
stored, then erased, than after Block is exited the old (stored) value is restored. In the case of Module
the variables are renamed so that their names do not conflict with any other names. Another construc-
tion that localizes variables is With. Note that, unlike in Module and Block, all local variables in With
must be initialized so you can't use assignments to local variables in With.

ClearAll[f]

f[x_List] := Module[{u = Length[x], v}, v=u + 1]
fI{1, 2, 3}1

4

glx_List] := Module[{u = Length[x], v=u + 1}, V]
gl{1, 2, 3}]

u+1

ClearAll[g]

5. More Advanced Topics.nb

1+u

1+u

||

Another important example:

Although foo was definied outside Block, its value inside Block is changed. This does not happen when
we use Module:

Thus, Module depends only on the original definition, Block on the evaluation. (Lexical scoping vs
dynamic scoping).

= Loops and Functional Iteration

5. More Advanced Topics.nb

Programs written in this style change the values of some variable. In order to get the changed value
one has to explicitly evaluate the variable. Here is a simple procedural program which uses the Do loop.

?Do

Do[expr, {imax}] evaluates expr imax times.
Do[expr, {i, imx}] evaluates expr with the
variable i successively taking on the values 1 through i (in steps of 1).
Dolexpr, {i, imn, imax}] starts with i = igin.
Do[expr, {i, imin, imax, di}] uses steps di.
Do[expr, {i, {i1, i2, ...}}] uses the successive values iy, iy, .. .
Do[expr, {i, imin, imax}s {J» Jmins Jmax}» ---] €valuates expr looping over different values of j, etc. for eachi. >

Timing[x = 1; Do[x ++, {20000}]; x]

(0. 011248, 20001}

We can do the same thing by using the functional style. When programming in this style we use func-
tions which return values rather then change states of variables. Instead of loops we use "higher func-
tions", that is functions whose arguments are functions. One of such functions is Nest.

?Nest

Nest[f, expr, n] gives an expression with f applied n times to expr. >

Nest[f, a, 4]

freffralgl

There is also a related function NestList

?NestList

NestList[f, expr, n] gives a list of the results of applying f to expr O through n times. >

NestList[f, a, 4]

{a, fra], f(fraj], f(f(frajj], f(f(f[faj]]]}

Instead of using the Do loop above we can obtain the same result using the functional approach as
follows:

Nest[# + 1 &, 1, 20000] // Timing

{0. 000682, 20001}

The program runs much faster.

5. More Advanced Topics.nb

FoldList[f, a, {b, ¢, d, €}]
{a, f [a, b], f[f[a, b], c], f[f[f[a, b], c], d], f[f[f[f[a&a, b], c], d], e]}
Here f has to be a function of two arguments. Here is an example which shows the working of FoldList:

FoldList[Plus, 0, {a, b, ¢, d}]

{0, a, a+b, a+b+c, a+b+c+d}

FoldList[Times, 1, {a, b, c, d}]

{1, a, ab, abc, abcd}

Finally there is one new and very useful function that appeared in Mathematica 6.

?Accumulate

Accumulate([list] gives a list of the successive accumulated totals of elements in list. >

Accumulatef{a, b, c, d, €}]

{a, a+b, a+b+c, a+b+c+d, a+b+rc+d+e}

The same result can be achieved using FoldList, however, Accumulate, being a more specialised
function, is considerably faster.

FoldList[Plus, O, {a, b, c, d, €}]

{0, a, a+b, a+b+c, a+b+c+d, a+b+c+d+e}

Is = Randoml nteger [{1, 100}, {1000}];
a= (Accumulatefls]; // Timing)

{0. 00005, Nul | }

b = (Rest[FoldList[Plus, 0, Is]]; // Timing)

{0. 000465, Nul | }

First[b]/First[a]

9.3

5. More Advanced Topics.nb

Last[a] == Last[b]

True

This much greater speed of a more specialized function compared with a more general one is typical of
Mathematica programming.

http: //reference. wol fram com/mat hemati ca/tutorial /
Appl yi ngFunct i onsRepeat edl y. ht n

= Block and global variables.

One of the most common uses of Block is to change temporarily the value of a global variable. For
example, the global variable $RecursionLimit has by defaul the value:

$Recur si onLi m t

256

The reason for this is to stop accidental infinte recurssion from occuring as a result of programming
errors. However, this can sometimes be inconvenient. Here is a familiar example.

Cl ear [Fi b]

Fib[l] =1; Fib[2] =1; Fib[n_]:=Fib[n] =Fib[n-1] +Fib[n-2];

Fi b[3000]
$RecursionLimit::reclim : Recursion depth of 256 exceeded. >

The value of 256 for $RecursionLimit prevents the code from working. Using Block we can temporarily
change this value:

Cl ear [Fi b]

Fib[l] =1; Fib[2] =1: Fib[n_]:=Fib[n] =Fib[n-1] +Fib[n-2];

Bl ock [{$Recursi onLimi t = 10000}, Fi b[3000]]

410615886307 971260333568 378719267 105220125108637 369252408 885430926905584274 -
113403731330491660850044560830036835706942274588569362145476502674373045 -
446852160486 606292497 360503469 773 453733196887 405847 255290082 049086907512 -
622059054542 195889758031109222670849274793859539133318371244795543147611 -
073276240066 737934085191 731810993201 706 776 838934 766 764 778 739502174470 268 -
627820918553 842225858 306408 301661862900358266857238210235802504351951472 -
997919676524 004 784236376453 347268 364 152648 346245840573214241419937917242 -
918602639810097 866 942 392015404 620153818671425739835074851396421139982713 -
640679581 178458198 658 692 285968 043 243656 709 796 000

http://reference.wolfram.com/mathematica/tutorial/ApplyingFunctionsRepeatedly.html

10 5. More Advanced Topics.nb

However, note that the global value of $RecursionLimit remains unchanged:

$Recur si onLi mi t

256

Example 1. Simulating Brownian Motion

o One Path

BrownianMation[n_] := Accumulate[Prepend[RandomReal[Nor malDistribution[0, Sqrt[1/n]], {n}], OI1

slower alternative

Br owni anMotion[n_] : =
Fol dLi st [Pl us, 0, RandonReal [Normal Di stribution[0, Sgrt [1/n]], {n}]]

and even slower
Br owni anMbtion[n_] : =

Nest Li st [t + RandonReal [Normal Di stribution[0, Sqrt [1/n]]] & O, n]

ListLinePlot[BrownianM otion[2000]]

o2}
oy
1500 2000
Wi
-04F

—-0.6 -

5. More Advanced Topics.nb

ListLinePlot[BrownianM otion[2000], DataRange — {0, 1}]

04+

WMWMWM

-10F

o Many Paths

Cl ear [Browni anMbt i on]

BrownianMotion[time_, steps , paths] := Transpose[Accumulate[Join[{ConstantArray[0, paths]},
Transpose]RandomReal[Nor malDistribution[0, Sqrt[time/steps]], {paths, steps}1111]

ListLinePlot[BrownianMotion[1, 100, 10], DataRange - {0, 1}, PlotRange - All]

11

12 5. More Advanced Topics.nb

Manipulate[L istLinePlot[BrownianM otion[time, steps, paths], DataRange - {0, time}, PlotRange —» All],
{{steps, 100, "number of steps'}, 10, 300, 1}, {{paths, 10, " number of paths'}, 1, 50, 1},
{{time, 1, "time"}, 0.5, 10}, SaveDefintions = True]

number of steps

)

number of paths

)

time

()

N
AN TN G, W)
05 ANV TNV NS
W

ListLinePlot::lpn : BrownianMotion[2.56, 156, 15] is not a list of numbers or pairs of numbers. >

5. More Advanced Topics.nb

Manipulate[
BlockRandom[L istLinePlot[BrownianM otion[time, steps, paths], DataRange - {0, time}, PlotRange - {-2, 2}]1,
{{steps, 100, " number of steps'}, 10, 300, 1}, {{paths, 10, " number of paths'}, 1, 50, 1},
{{time, 1, "time"}, 0.5, 10}, SaveDefitition — True, Initialization :»
(BrownianMoation[time_, steps , paths] := Transpose[Accumulate[Join[{ConstantArray[0, paths]},
RandomReal[Nor malDistribution[0, Sqrt[time/steps]], {steps, paths}111D)]

number of steps

)

number of paths

()

time :G

13

14

5. More Advanced Topics.nb

M anipulate[BlockRandom[SeedRandom[r];

ListLinePlot[BrownianM otion[time, steps, paths], DataRange - {0, time}, PlotRange —» {-2, 2}1],
{{steps, 100, " number of steps'}, 10, 300, 1}, {{paths, 10, " number of paths'}, 1, 50, 1},

{{time, 1, "time"}, 0.5, 10}, {{r, O, ""}, Button[" randomize", r = RandomI nteger [2" 64 — 1]] &},
SaveDefitition - True, Initialization :»

(BrownianMotion[time_, steps , paths] := Transpose[Accumulate[Join[{ConstantArray[0, paths]},
RandomReal[Nor malDistribution[O, Sqrt[time/steps]], {steps, paths}]1111)]

number of steps

(]

number of paths G

time ‘D

randomize

A
’ ¥
AW/ A

AW
{iv4

W
‘A "A"IL\\A{’A A &' _ »
‘ ‘#KWW"" ""‘ X " V yy"‘
9
-1 N \

http://reference.wolfram.com/mathematica/tutorial/PseudorandomNumbers.html

A few words about Dynamic and Manipulate

In version 6 of Mathematica, new features appeared which made it possible to use the Front End in a

new way. The main idea is that expressions with head Dynamic are updated when their “displayed
form” changes. The simplest case is:

= Dynamic

Dynami c [x]

http://reference.wolfram.com/mathematica/tutorial/PseudorandomNumbers.html
http://reference.wolfram.com/mathematica/tutorial/PseudorandomNumbers.html

5. More Advanced Topics.nb
DateString[]
Wed 16 Nov 2011 14:29:47

Dynami c[Refresh[DateString[], Updatelnterval » Infinity]]

Wed 4 Jan 2012 13:06:21

{Sl i der [Dynam c[x], Appearance - "Label ed"], Dynam c[x”"2]}

(4 o o]

Sl i der [Dynami c[x]]

{

Dynam cModul e[{x}, {Dynam c[x”2], Slider [Dynam c[x], Appearance - "Label ed"]1}1]

{0.190969, B 0.437 }

Dynam cModul e[{x},
{Dynami c[x”~2], Slider [Dynam c[x], {0, 10, 1}, Appearance - "Label ed"1}]

fo o

Dynam cModul e[{x}, {Dynam c[x”2], PopupMenu[Dynam c[x], Range[10]]1}]

{16. 4 }

Dynam cModul e[{x}, {Dynami c[x”2], SetterBar [Dynam c[x], Range[10]]}]
(s 1| 2] 3] 4[5 o] 73] o] 2]

Dynam cModul e[{x = 1},
{Dynami c [x], Dynam c[Slider [x, {0, 1}, Appearance - "Label ed"11}1]

o 3o)

Dynam cModul e[{x = 1},
{Dynami c[x], Slider [Dynam c[x], {0, 1}, Appearance - "Label ed"]}]

0.817, M 0.817
{ 0 J

15

16

5. More Advanced Topics.nb

Dynam cModul e[{n = 1}, Row[{Dynam c [Pl ot [x"n, {x, -1, 1}, Pl ot Range » Al'l]1,
Sli der [Dynam c[n], {0, 5, 1}, Appearance - "Label ed"]}11

0.5

4}4{32t 05 1.0

2

M
L 3

Manipulate

Mani pul ate[x~2, {x, 1, 10, 1, SetterBar}]

SEF AN P

49

Mani pul at e [#"2 &e@expr, {{expr, 0, "expression"}, 0, 1, 0.1}]

expression O;

Mani pul at e[#"2 &[expr], {expr, Table[i, {i, 0, 1, 0.1}1}]

Mani pul at e[#"2 &e@expr, {{expr, 0, "expression"}, 0, 1, 0.1, Appearance - "Label ed" }]

expression 0.5

()

0.25

5. More Advanced Topics.nb

5. More Advanced Topics.nb

5. More Advanced Topics.nb

5. More Advanced Topics.nb

http://reference.wolfram.com/mathematica/tutorial/IntroductionToDynamic.html
http://reference.wolfram.com/mathematica/tutorial/IntroductionToManipulate.html
http://reference.wolfram.com/mathematica/tutorial/IntroductionToManipulate.html

	1-Introduction and a survey
	2-Language Basics
	3-Graphics
	4-Introduction to Dynamic Interactivity
	5-More Advanced Topics

